第7章 排序

前言

        在这一章,我们讨论数组元素的排序问题。为简单起见,假设在我们的例子中数组只包含整数,虽然更复杂的结构显然也是可能的。对于本章的大部分内容,我们还假设整个排序工作能够在主存中完成,因此,元素的个数相对来说比较小(小于\mathit{10^{6}})。当然,不能在主存中完成而必须在磁盘或磁带上完成的排序也相当重要。这种类型的排序叫作外部排序(external sorting),将在本章末尾讨论外部排序。

        我们对内部排序的考察将指出:

  • 存在几种容易的算法以\mathit{O(N^{2})}排序,如插入排序。
  • 有一种算法叫作希尔排序(Shellsort),它的编程非常简单,以\mathit{o(N^{2})}运行,并在实践中很有效。
  • 有一些稍微复杂的\mathit{O(NlogN)}的排序算法。
  • 任何通用的排序算法均需要\mathit{\Omega (NlogN)}次比较。

        本章的其余部分将描述和分析各种排序算法。这些算法包含一些有趣的、重要的代码优化和算法设计思想。可以对排序做出精确的分析。预先说明,在适当的时候,我们将尽可能地多做一些分析。

7.1 预备知识

        我们描述的算法都将是可以互换的。每个算法都将接收一个含有元素的数组和一个包
含元素个数的整数。

        我们将假设\mathit{N}是传递到排序例程中的元素个数,它已经被检查过,是合法的。按照C
的约定,对于所有的排序,数据都将在位置0处开始。

        我们还假设“<”和“>”运算符存在,它们可以用于对输入进行一致的排序。除赋
值运算符外,这两种运算是仅有的允许对输入数据进行的操作。在这些条件下的排序叫作
基于比较的排序(comparison-based sorting)。

7.2 插入排序

7.2.1 算法

        最简单的排序算法之一是插入排序(insertion sort)。插入排序由\mathit{N-1}趟(pass)排序组成。对于\mathit{P=1}趟到\mathit{P=N-1}趟,插入排序保证从位置0到位置\mathit{P}上的元素为已排序状态。插入排序利用了这样的事实:位置0到位置\mathit{P-1}上的元素是已排过序的。图7-1显示一个简单的数组在每一趟插入排序后的情况。

        图7-1表达了一般的方法。在第\mathit{P}趟,我们将位置\mathit{P}上的元素向左移动到它在前\mathit{P+1}个元素中的正确位置上。图7-2中的程序实现该想法。第2~5行实现数据移动而没有明显使用交换。将位置\mathit{P}上的元素存于Tmp中,而(在位置\mathit{P}之前)所有更大的元素都向右移动一个位置。然后将Tmp置于正确的位置上。这种方法与实现二叉堆时所用到的技巧相同。

void InsertionSort(ElementType A[], int N)
{int j, P;ElementType Tmp;for (P = 1; P < N; P++){Tmp = A[P];for (j = P; j > 0 && A[j - 1] > Tmp; j--)A[j] = A[j - 1];A[j] = Tmp;}
}

7.2.2 插入排序的分析

        由于嵌套循环每趟花费N次迭代,因此插入排序为\mathit{O(N^{2})},而且这个界是精确的,因为以反序输入可以达到该界。精确计算指出对于\mathit{P}的每一个值,第4行的测试最多执行\mathit{P+1}次。对所有的\mathit{P}求和,得到总数为

\sum_{i=2}^{N}i=2+3+4+\cdot \cdot \cdot +N=\Theta (N^{2})

        另一方面,如果输入数据已预先排序,那么运行时间为\mathit{O(N)},因为内层for循环的检测总是立即判定不成立而终止。事实上,如果输入几乎已排序(该术语将在下一节更严格地定义),那么插入排序将运行得很快。由于这种变化差别很大,因此值得我们去分析该算法平均情形的行为。实际上,和各种其他排序算法一样,插入排序的平均情形也是\Theta (N^{2}),详见下节的分析。

7.3 一些简单排序算法的下界

        数字数组的一个逆序(inversion)是指数组中具有\mathit{i<j}\mathit{A[i]>A[j]}的序偶(\mathit{A[i],A[j]})。在上节的例子中,输入数据34,8,64,51,32,21有9个逆序,即(34,8),(34,32),(34,21),(64,51),(64,32),(64,21),(51,32),(51,21),(32,21)。这正好是需要由插入排序(非直接)执行的交换次数。情况总是这样,因为交换两个不按原序排列的相邻元素恰好消除一个逆序,而一个排过序的数组没有逆序。由于算法中还有\mathit{O(N)}项其他的工作,因此插入排序的运行时间是\mathit{O(I+N)},其中\mathit{I}为原始数组中的逆序数。于是,若逆序数是\mathit{O(N)},则插入排序以线性时间运行。

        我们可以通过计算排列中的平均逆序数而得出插入排序平均运行时间的精确的界。如往常一样,定义平均是一个困难的命题。我们将假设不存在重复元素(如果允许重复,那么我们甚至连重复的平均次数究竟是什么都不清楚)。利用该假设,我们可设输入数据是前\mathit{N}个整数的某个排列(因为只有相对顺序才是重要的),并设所有的排列都是等可能的。在这些假设下,我们有如下定理:

        定理 7.1 \mathit{N}个互异数的数组的平均逆序数是\mathit{N(N-1)/4}

        证明:对于含有任意的数的表\mathit{L},考虑其反序表\mathit{L_{r}}。上例中的反序表是21,32,51,64,8,34。考虑该表中任意两个数的序偶(x,y),且y>x。显然,恰是\mathit{L}\mathit{L_{r}}之中的一个,该序偶表示一个逆序。在表\mathit{L}和它的反序表\mathit{L_{r}},中序偶的总个数为\mathit{N(N-1)/2}。因此,平均表有该量的一半,即\mathit{N(N-1)/4}个逆序。

        这个定理意味着插入排序平均是二次的,同时也提供了只交换相邻元素的任何算法的一个很强的下界。

        定理 7.2 通过交换相邻元素进行排序的任何算法平均需要\mathit{\Omega (N^{2})}时间。

        证明:初始的平均逆序数 是\mathit{N(N-1)/4=\Omega (N^{2})},而每次交换只减少一个逆序,因此需要\mathit{\Omega (N^{2})}次交换。

        这是证明下界的一个例子,它不仅对非显式地实施相邻元素的交换的插入排序有效,而且对诸如冒泡排序和选择排序等其他一些简单算法也是有效的,不过这些算法将不在这里描述。事实上,它对一整类只进行相邻元素的交换的排序算法(包括那些未被发现的算法)都是有效的。正因为如此,这个证明在经验上是不能被认可的。虽然这个下界的证明非常简单,但是一般说来证明下界要比证明上界复杂得多。

        这个下界告诉我们,为了使一个排序算法以亚二次(subquadratic)或\mathit{o (N^{2})}时间运行,必须执行一些比较,特别要对相距较远的元素进行交换。一个排序算法通过删除逆序得以向前进行,而为了有效地运行,它必须每次交换删除不止一个逆序。

7.4 希尔排序

        希尔排序(Shellsort)的名称源于它的发明者Donald Shell,该算法是冲破二次时间屏障的第一批算法之一,不过,从它的发现之日起,又过了若干年后才证明了它的亚二次时间界。正如上节所提到的,它通过比较相距一定间隔的元素来工作,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止。由于这个原因,希尔排序有时也叫作缩小增量排序(diminishing increment sort)。

        希尔排序使用一个序列\mathit{h_{1},h_{2},\cdot \cdot \cdot ,h_{t}}叫作增量序列(increment sequence)。只要\mathit{h_{1}=1},任何增量序列都是可行的,不过,有些增量序列比另外一些增量序列更好(后面我们将讨论这个问题)。在使用增量\mathit{h_{k}}的一趟排序之后,对于每一个\mathit{i}我们有\mathit{A[i]\leqslant A[i+h_{k}]}(这里它是有意义的),所有相隔\mathit{h_{k}}的元素都被排序。此时称文件是\mathit{h_{k}}-排序的(\mathit{h_{k}}-sorted)。例如,图7-3显示了各趟排序后数组的情况。希尔排序的一个重要性质(我们只叙述而不证明)是一个\mathit{h_{k}}-排序的文件(此后将是\mathit{h_{k-1}}-排序的)保持它的\mathit{h_{k}}-排序性。事实上,假如情况不是这样的话,那么该算法也就没什么意义了,因为前面各趟排序的结果会被后面各趟排序给打乱。

        \mathit{h_{k}}-排序的一般做法是,对于\mathit{h_{k},h_{k}+1,\cdot \cdot \cdot ,N-1}中的每一个位置\mathit{i},把其上的元素放到\mathit{i,i-h_{k},i-2h_{k}\cdot \cdot \cdot }中间的正确位置上。虽然这并不影响最终结果,但是仔细的考察指出,一趟\mathit{h_{k}}-排序的作用就是对\mathit{h_{k}}个独立的子数组执行一次插入排序。当我们分析希尔排序的运行时间时,这个考察结果将是很重要的。

        增量序列的一种流行(但是不好)的选择是使用Shell建议的序列:\mathit{h_{t}=[N/2]}\mathit{h_{k}=[h_{k+1}/2]}图7-4包含一个使用该序列实现希尔排序的程序。后面我们将看到,存在一些递增的序列,它们对该算法的运行时间做出了重要的改进,即使是一个小的改变都可能剧烈地影响算法的性能。

void ShellSort(ElementType A[], int N)
{int i, j, Increment;ElementType Tmp;for (Increment = N / 2; Increment > 0; Increment /= 2)for(i = Increment; i < N; i++){Tmp = A[i];for (j = i; j >= Increment; j -= Increment)if(Tmp < A[j - Increment])A[j] = A[j - Increment];elsebreak;A[j] = Tmp;}
}

希尔排序的最坏情形分析

        虽然希尔排序编程简单,但是,其运行时间的分析则完全是另外一回事。希尔排序的运行时间依赖于增量序列的选择,而证明可能相当复杂。希尔排序的平均情形分析,除最平凡的一些增量序列外,是一个长期未解决的问题。我们将证明在两个特别的增量序列下最坏情形的精确的界。

        定理 7.3 使用希尔增量时希尔排序的最坏情形运行时间为\Theta (N^{2})

        证明:证明不仅需要指出最坏情形运行时间的上界,而且还需要指出存在某个输入实际上就花费\Omega (N^{2})时间运行。首先通过构造一个坏情形来证明下界。我们先选择\mathit{N}是2的幂。这使得除最后一个增量是1外所有的增量都是偶数。现在,我们给出一个数组Input-Data作为输入,它的偶数位置上有\mathit{N/2}个同为最大的数,而在奇数位置上有\mathit{N/2}个同为最小的数(对该证明,第一个位置是位置1)。由于除最后一个增量外所有的增量都是偶数,因此,当我们进行最后一趟排序前,\mathit{N/2}个最大的元素仍然处在偶数位置上,而\mathit{N/2}个最小的元素也还是在奇数位置上。于是,在最后一趟排序开始之前第\mathit{i}个最小的数(\mathit{i\leqslant N/2})在位置\mathit{2i-1}上。将第\mathit{i}个元素恢复到其正确位置需要在数组中移动\mathit{i-1}个间隔。这样,仅仅将\mathit{N/2}个最小的元素放到正确的位置上就至少需要\sum_{i=1}^{N/2}i-1=\Omega (N^{2})的工作。举一个例子,图7-5显示一个\mathit{N=16}时的坏(但不是最坏)的输入。在2-排序后的逆序数一直恰好保持为1+2+3+4+5+6+7=28,因此,最后一趟排序将花费相当多的时间。

        现在我们证明上界\mathit{O(N^{2})}以结束本证明。前面已经观察到,带有增量\mathit{h_{k}}的一趟排序由\mathit{h_{k}}个关于\mathit{N/h_{k}}个元素的插入排序组成。由于插入排序是二次的,因此一趟排序总的开销是\mathit{O(h_{k}(N/h_{k})^{2})=O(N^{2}/h_{k})}。对所有各趟排序求和则给出总的界为\mathit{O(\sum_{i=1}^{t}N^{2}/h_{i})=O(N^{2}\sum_{i=1}^{t}1/h_{k})}。因为这些增量形成一个几何级数,其公比为2,而该级数中的最大项是
\mathit{h_{1}=1},因此,\mathit{\sum_{i=1}^{t}1/h_{i}<2}。于是,我们得到总的界\mathit{O(N^{2})}

        希尔增量的问题在于,这些增量对未必互素,因此较小的增量可能影响很小。Hibbard提出一个稍微不同的增量序列,它在实践中(并且理论上)给出更好的结果。他的增量形如\mathit{1,3,7,\cdot \cdot \cdot ,2^{k}-1}。虽然这些增量几乎是相同的,但关键的区别是相邻的增量没有公因子。现在我们就来分析使用这个增量序列的希尔排序的最坏情形运行时间,这个证明相当复杂。

        定理 7.4 使用Hibbard增量的希尔排序的最坏情形运行时间为\mathit{\Theta (N^{3/2})}

        证明:我们只证明上界而将下界的证明留作练习。这个证明需要堆垒数论(additivenumber theory)中某些众所周知的结果。本章末提供了这些结果的参考资料。

        和前面一样,对于上界,我们还是计算每一趟排序的运行时间的界,然后对各趟求和。对于那些\mathit{h_{k}>N^{1/2}}的增量,我们将使用前一定理得到的界\mathit{O(N^{2}/h_{k})}。虽然这个界对于其他增量也是成立的,但是它太大,用不上。直观地看,我们必须利用这个增量序列是特殊的这样一个事实。我们需要证明的是,对于位置\mathit{P}上的任意元素\mathit{A_{p}},当要执行\mathit{h_{k}}-排序时,只有少数元素在位置\mathit{P}的左边且大于\mathit{A_{p}}

        当对输入数组进行\mathit{h_{k}}-排序时,我们知道它已经是\mathit{h_{k+1}}-排序和\mathit{h_{k+2}}-排序的了。在\mathit{h_{k}}-排序以前,考虑位置\mathit{P}\mathit{P-i}上的两个元素,其中\mathit{i\leqslant P}。如果\mathit{i}\mathit{h_{k+1}}\mathit{h_{k+2}}的倍数,那么显然\mathit{A[P-i]<A[P]}。不仅如此,如果\mathit{i}可以表示为\mathit{h_{k+1}}\mathit{h_{k+2}}的线性组合(以非负整数的形式),那么也有\mathit{A[P-i]<A[P]}。例如,当我们进行3-排序时,文件已经是7-排序和
15-排序的了。52可以表示为7和15的线性组合:52=1×7+3×15。因此,A[100]不可能大于A[152],因为\mathit{A[100]\leqslant A[107]\leqslant A[122]\leqslant A[137]\leqslant A[152]}

        现在,\mathit{h_{k+2}=2h_{k+1}+1},因此\mathit{h_{k+1}}\mathit{h_{k+2}}没有公因子。在这种情形下,可以证明,至少和\mathit{(h_{k+1}-1)(h_{k+2}-1)=8h_{k}^{2}+4h_{k}}一样大的所有整数都可以表示为\mathit{h_{k+1}}\mathit{h_{k+2}}的线性组合(见本章末尾的参考文献)。

        这就告诉我们,第4行的for循环体对于这些\mathit{N-h_{k}}位置上的每一个,最多执行\mathit{8h_{k}+4=O(h_{k})}次。于是我们得到每趟的界\mathit{O(Nh_{k})}

        利用大约一半的增量满足\mathit{h_{k}<\sqrt{N}}的事实并假设\mathit{t}是偶数,那么总的运行时间为
\mathit{O(\sum_{k+1}^{t/2}Nh_{k}+\sum_{k=t/2+1}^{t}N^{2}/h_{k})=O(N\sum_{k=1}^{t/2}h_{k}+N^{2}\sum_{k=t/2+1}^{t}1/h_{k})}
因为两个和都是几何级数,并且\mathit{h_{t/2}=\Theta (\sqrt{N})},所以上式简化为
\mathit{=O(Nh_{t/2})+O(\frac{N^{2}}{h_{t/2}})=O(N^{3/2})}

        使用Hibbard增量的希尔排序平均情形运行时间基于模拟的结果被认为是\mathit{O(N^{5/4})},但是没有人能够证明该结果。Pratt已经证明,\mathit{\Theta (N^{3/2})}的界适用于广泛的增量序列。

        Sedgewick 提出了几种增量序列,其最坏情形运行时间(也是可以达到的)为\mathit{O(N^{4/3})}。对于这些增量序列的平均运行时间猜测为\mathit{O(N^{7/6})}。经验研究指出,在实践中这些序列的运行要比Hibbard的好得多,其中最好的是序列(1,5,19,41,109,...),该序列中的项或者是\mathit{9\cdot 4^{i}-9\cdot 2^{i}+1},或者是\mathit{4^{i}-3\cdot 2^{i}+1}。通过将这些值放到一个数组中可以最容易地实现该算法。虽然有可能存在某个增量序列使得能够对希尔排序的运行时间做出重大改进,但是,这个增量在实践中还是最为人们称道的。

        关于希尔排序还有几个其他结果,它们需要数论和组合数学中一些艰深的定理而且主要是在理论上有用。希尔排序是算法非常简单又具有极其复杂的分析的一个好例子。

        希尔排序的性能在实践中是完全可以接受的,即使是对于数以万计的\mathit{N}仍是如此。编程的简单特点使得它成为对较大的输入数据经常选用的算法。

7.5 堆排序

7.6 归并排序

7.7 快速排序

7.7.1 选取枢纽元

7.7.2 分割策略

7.7.3 小数组

7.7.4 实际的快速排序例程

7.7.5 快速排序的分析

7.7.6 选择的线性期望时间算法

7.8 大型结构的排序

7.9 排序的一般下界

7.10 桶式排序

7.11 外部排序

7.11.1 为什么需要新的算法

7.11.2 外部排序模型

7.11.3 简单算法

7.11.4 多路合并

7.11.5 多相合并

7.11.6 替换选择

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220218.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端检测字符串中是否含有特殊字符,并返回该特殊字符

一、判断字符串中是否含有特殊字符 const hasSpecicalCharacter (str) > {var regex /[!#$%^&*(),.?":{}|<>]/return regex.test(str) } //含有特殊字符返回true, 没有特殊字符返回false 二、判断字符串中是否含有特殊字符&#xff0c;并返回该特殊字符…

传统软件集成AI大模型——Function Calling

传统软件和AI大模型的胶水——Function Calling 浅谈GPT对传统软件的影响Function Calling做了什么&#xff0c;为什么选择Function CallingFunction Calling简单例子&#xff0c;如何使用使用场景 浅谈GPT对传统软件的影响 目前为止好多人对chatGPT的使用才停留在OpenAI自己提…

20、WEB攻防——PHP特性缺陷对比函数CTF考点CMS审计实例

文章目录 一、PHP常用过滤函数&#xff1a;1.1 与1.2 md51.3 intval1.4 strpos1.5 in_array1.6 preg_match1.7 str_replace CTFshow演示三、参考资料 一、PHP常用过滤函数&#xff1a; 1.1 与 &#xff1a;弱类型对比&#xff08;不考虑数据类型&#xff09;&#xff0c;甚至…

pytorch文本分类(三)模型框架(DNNtextCNN)

pytorch文本分类&#xff08;三&#xff09;模型框架&#xff08;DNN&textCNN&#xff09; 原任务链接 目录 pytorch文本分类&#xff08;三&#xff09;模型框架&#xff08;DNN&textCNN&#xff09;1. 背景知识深度学习 2. DNN2.1 从感知器到神经网络2.2 DNN的基本…

机器视觉【1】相机的成像(畸变)模型

零、前言 很久没写文章&#xff0c;简单唠一唠。 不知道巧合还是蜀道同归&#xff0c;部门领导设定了些研究课题&#xff0c;用于公司部门员工的超前发展&#xff0c;该课题是“2D to 3D的三维重建”&#xff0c;这一块刚好是我个人看中的一个大方向&#xff0c;所以就有了这…

智能优化算法应用:基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于黑猩猩算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黑猩猩算法4.实验参数设定5.算法结果6.参考文…

早期的OCR是怎么识别图片上的文字的?

现在的OCR技术融合了人工智能技术&#xff0c;通过深度学习&#xff0c;无论是识别的准确率还是效果都非常不错&#xff0c;那您知道在早期的OCR是通过什么技术来实现的吗&#xff1f;如果您不知道&#xff0c;那么&#xff0c;就让我来告诉您&#xff1a;它主要是基于字符的几…

matlab中Signal Builder模块的用法总结

目录 前言方法一方法二参考文章 前言 今天在用matlab中Signal Builder的模块时&#xff0c;不知道怎么去得到想要的信号源&#xff0c;于是上网查了一下&#xff0c;并记录一下 方法一 如图所示&#xff0c;打开自定义 上面一行是横坐标&#xff0c;下面一行是纵坐标 [0,1…

【uniapp小程序-上拉加载】

在需要上拉加载的页面的page.json上添加红框框里面的 onReachBottom() {if(this.commentCurrent<this.commentTotal){this.commentCurrent 1; this.commentList();this.status loading;}else{this.status ;} }, methods:{commentList(){let params {courseid:this.cour…

Android-----AndroidManifests.xml 之meta-data

一、概念 meta-data&#xff1a;元数据、文件元数据。主要用来定义一些组件相关的配置值。 metadata是一组供父组件使用的名值对&#xff08;name-value pair&#xff09;&#xff0c;一个组件元素可以包含任意数量的meta-data子元素。这些子元素的值存放在一个 Bundle 对象中…

加速数据采集:用OkHttp和Kotlin构建Amazon图片爬虫

引言 曾想过轻松获取亚马逊上的商品图片用于项目或研究吗&#xff1f;是否曾面对网络速度慢或被网站反爬虫机制拦截而无法完成数据采集任务&#xff1f;如果是&#xff0c;那么本文将为您介绍如何用OkHttp和Kotlin构建一个高效的Amazon图片爬虫解决方案。 背景介绍 亚马逊&a…

【九】python模板方法模式

文章目录 9.1 模板方法模式概述9.2 代码示例9.3 模板方法模式的UML图9.4 模板方法模式的优点和缺点9.4.1 模板方法模式提供以下优点:9.4.2 模板方法模式的缺点如下: 9.1 模板方法模式概述 模板方法模式是一种行为设计模式&#xff0c;它使用一个抽象的基类定义了一个操作中的算…

Linux shell编程学习笔记36:read命令

*更新日志 *2023-12-18 1.根据[美] 威廉肖特斯 &#xff08;Willian shotts&#xff09;所著《Linux命令行大全&#xff08;第2版&#xff09;》 更新了-e、-i、-r选项的说明 2.更新了 2.8 的实例&#xff0c;增加了gif动图 3.补充了-i的应用实例 2.1…

50ms时延工业相机

华睿工业相机A3504CG000 参数配置&#xff1a; 相机端到端理论时延&#xff1a;80ms 厂家同步信息&#xff0c;此款设备帧率上线23fps&#xff0c;单帧时延&#xff1a;43.48ms&#xff0c;按照一图缓存加上传输显示的话&#xff0c;厂家预估时延在&#xff1a;80ms 厂家还有…

音视频学习(二十一)——rtmp收流(tcp方式)

前言 本文主要介绍rtmp协议收流流程&#xff0c;在linux上搭建rtmp服务器&#xff0c;通过自研的rtmp收流库发起取流请求&#xff0c;使用ffmpegqt实现视频流的解码与播放。 关于rtmp协议基础介绍可查看&#xff1a;https://blog.csdn.net/www_dong/article/details/13102607…

OpenSSL的源码在哪里下载?

官方网站去下载&#xff0c;网址&#xff1a; https://www.openssl.org/source/ 比较老的版本的下载页面地址&#xff1a; https://www.openssl.org/source/old/ 由于某面板的OpenSSL模块的安装配置语句如下&#xff1a; --with-openssl/root/rpmbuild/BUILD/openssl-1.0.2u所…

概率论复习

第一章&#xff1a;随机概率及其概率 A和B相容就是 AB 空集 全概率公式与贝叶斯公式&#xff1a; 伯努利求概率&#xff1a; 第二章&#xff1a;一维随机变量及其分布&#xff1a; 离散型随机变量求分布律&#xff1a; 利用常规离散性分布求概率&#xff1a; 连续性随机变量…

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型

目录 前言 1 风速数据EMD分解与可视化 1.1 导入数据 1.2 EMD分解 2 数据集制作与预处理 2.1 先划分数据集&#xff0c;按照8&#xff1a;2划分训练集和测试集 2.2 设置滑动窗口大小为96&#xff0c;制作数据集 3 基于Pytorch的EMD-CNN-GRU并行模型预测 3.1 数据加载&a…

ansible(不能交互)

1、定义 基于python开发的一个配置管理和应用部署工具&#xff0c;在自动化运维中异军突起&#xff0c;类似于xshell一键输入的工具&#xff0c;不需要每次都切换主机进行操作&#xff0c;只要有一台ansible的固定主机&#xff0c;就可以实现所有节点的操作。不需要agent客户端…

100GPTS计划-AI写诗PoetofAges

地址 https://chat.openai.com/g/g-Cd5daC0s5-poet-of-ages https://poe.com/PoetofAges 测试 创作一首春天诗歌 创作一首夏天诗歌 创作一首秋天诗歌 创作一首冬天诗歌 微调 诗歌风格 语气&#xff1a;古典 知识库