回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图)

目录

    • 回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图) (多指标,多图)(多指标,多图)。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)优化参数为核参数。
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现GA-LSSVM基于遗传算法优化最小二乘向量机的多输入单输出数据回归预测模型 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/220376.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Relocations for this machine are not implemented,IDA版本过低导致生成汇编代码失败

目录 1、问题描述 2、安卓app发生崩溃,需要查看汇编代码上下文去辅助分析 3、使用IDA打开.so动态库文件,提示Relocations for this machine are not implemented 4、IDA版本较老,不支持ARM64的指令集,使用7.0版本就可以了 5、…

vue中echarts柱状图点击x轴数据复制

参考自:Vue 3 使用 vue-echarts 的柱状图 barItem 和 x, y 轴点击事件实现_echarts x轴点击事件-CSDN博客 例如柱状图如下: 步骤: 一、数据处理的时候需要在 xAxis 对象中添加:triggerEvent: true 这个键值对,以增加…

vscode如何开发微信小程序?(保姆级教学)

1.安装“微信小程序开发工具”扩展 2.安装“vscode weapp api”扩展 3.安装“vscode wxml”扩展 4.安装“vscode-wechat”扩展 5.在终端执行命令: vue create -p dcloudio/uni-preset-vue uniapp-test uniapp-test就是我这里的项目名称了 6.如果遇到了这个错误&a…

构建平战结合的融合通信指挥调度系统平台

华脉智联PTTLINK融合通信指挥调度系统将语音、视频、GIS进行高度融合,构建“平战结合”的指挥调度模式,既满足平时的日常办公、会议会商、应急培训、应急演练等需求,也能够应对战时的应急指挥、应急救援、应急决策等需求,达到统一…

前端性能监控和错误监控

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

积极办理等保测评,保证企业网络安全!

随着网络的越发普及以及发达,网络安全问题日益突出,保障网络安全越发重要。为了保障网络系统的安全稳定运行,办理等保测评成为了企业和组织必须面对的重要任务。简单来说就是,积极办理等保测评,保证企业网络安全&#…

1005. K 次取反后最大化的数组和 增强for循环(foreach循环)遍历数组

1005. K 次取反后最大化的数组和 原题链接:完成情况:解题思路:参考代码:_1005K次取反后最大化的数组和_1005K次取反后最大化的数组和_简洁写法 错误经验吸取增强for循环(foreach循环)遍历数组 原题链接&am…

Kafka--从Zookeeper数据理解Kafka集群工作机制

从Zookeeper数据理解Kafka集群工作机制 这一部分主要是理解Kafka的服务端重要原理。但是Kafka为了保证高吞吐,高性能,高可扩展的三高架构,很多具体设计都是相当复杂的。如果直接跳进去学习研究,很快就会晕头转向。所以&#xff0c…

亚信科技AntDB数据库——深入了解AntDB-M元数据锁的实现(二)

5.5 防止低优先级锁饥饿 AntDB-M按照优先级将锁又分了两类,用于解决低优先级锁饥饿问题。 ●独占型(hog): X, SNRW, SNW; 具有较强的不兼容性,优先级高,容易霸占锁,造成其他低优先级锁一直处于等待状态。 ●暗弱型(piglet): SW; …

【leetcode876】链表的中间结点Java代码讲解

12.19 链表的中间结点 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 1: 输入:head [1,2,3,4,5] 输出:[3,4,5] 解释:链表只有一个中间结点&a…

P2P网络下分布式文件共享场景的测试

P2P网络介绍 P2P是Peer-to-Peer的缩写,“Peer”在英语里有“对等者、伙伴、对端”的意义。因此,从字面意思来看,P2P可以理解为对等网络。国内一些媒体将P2P翻译成“点对点”或者“端对端”,学术界则统一称为对等网络(Peer-to-Pee…

Redis7--基础篇9(SpringBoot集成Redis)

1. jedis、lettuce、Redistemplate的关系 第一代为jedis,之后推出了lettuce,然后springboot继承了Redistemplate,现推荐使用Redistemplate。 总的来说,jedis、lettuce、Redistemplate都是java操作Redis数据库的驱动。 2. 本地Ja…

骨传导耳机和开放式耳机有什么区别?一文读懂骨传导耳机和开放式的关系!

先说结论,骨传导耳机和气传导耳机两者都属于是开放式耳机,开放式耳机指的是开放双耳佩戴的耳机! 开放式耳机分为两种,分别是骨传导耳机和气传导耳机,虽然两者都属于开放式耳机,但它们的佩戴方式和传声原理…

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线(贝塞尔的运用) 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点,三角面&#xff0c…

数据分析为何要学统计学(10)——如何进行比率检验

比率检验是通过样本推测某种事件的总体占比水平。要求事件仅有互斥的两种情况,即,概率分别为p与1-p。 比率检验分单样本和双样本两种情况,以下我们分别介绍。 1. 单样本比率检验 形如这样的问题:“小学生近视比例日益提高&#…

Starting the Docker Engine...一直转圈

出现的问题: 原因排查: 看了网上的很多篇文章,每个原因都排查了,没有发现问题。 遇到这样的情况应先看自己是否安装成功 打开运行,在空框中输入powershell并点击确定: docker version 显示版本证明安装…

2023年国赛高教杯数学建模D题圈养湖羊的空间利用率解题全过程文档及程序

2023年国赛高教杯数学建模 D题 圈养湖羊的空间利用率 原题再现 规模化的圈养养殖场通常根据牲畜的性别和生长阶段分群饲养,适应不同种类、不同阶段的牲畜对空间的不同要求,以保障牲畜安全和健康;与此同时,也要尽量减少空间闲置所…

微服务技术 RabbitMQ SpringAMQP P61-P76

B站学习视频https://www.bilibili.com/video/BV1LQ4y127n4?p61&vd_source8665d6da33d4e2277ca40f03210fe53a 文档资料: 链接:https://pan.baidu.com/s/1P_Ag1BYiPaF52EI19A0YRw?pwdd03r 提取码:d03r 一 初始MQ 1. 同步通讯 2. 异步通讯 3. MQ常…

Jenkins 添加节点报错

报错日志 Error: A JNI error has occurred, please check your installation and try again Exception in thread "main" java.lang.UnsupportedClassVersionError: hudson/remoting/Launcher has been compiled by a more recent version of the Java Runtime (cl…

如何搭建企业管理系统Odoo并远程访问管理界面【内网穿透】

文章目录 前言1. 下载安装Odoo:2. 实现公网访问Odoo本地系统:3. 固定域名访问Odoo本地系统 前言 Odoo是全球流行的开源企业管理套件,是一个一站式全功能ERP及电商平台。 开源性质:Odoo是一个开源的ERP软件,这意味着企…