SpringBoot接入轻量级分布式日志框架GrayLog

1.前言

日志在我们日常开发定位错误,链路错误排查时必不可少,如果我们只有一个服务,我们可以只简单的通过打印的日志文件进行排查定位就可以,但是在分布式服务环境下,多个环境的日志统一收集、展示则成为一个问题。目前主流的日志收集服务ELK,即便没用过肯定大家也肯定听说过,就是Elasticsearch + Logstash + Kibana

  • Elasticsearch:存储引擎,存放日志内容,利于全文检索
  • Logstash:数据传输管道,将日志内容传输到Elasticsearch,并且支持过滤内容,将内容格式化后再传输,可以满足绝大部分的应用场景
  • Kibana:开源的分析和可视化平台,在这里查看Elasticsearch中的数据

ELK有点重,服务占用资源高,并且部署和维护有些复杂,所以后面又衍生出:EFK
Elasticsearch + Filebeat + Kibana,用Filebeat替代Logstash做日志的收集,它是由Golang开发,够轻量,占用资源少,如果没有过滤日志内容进行格式化的需求,用这个替代Logstash确实是很不错的选择。

但今天给大家分享一个更加轻量级别的ELK日志框架,就是GrayLog
在这里插入图片描述

Graylog整合方案是使用 Elasticsearch 来存储,使用 MongoDB 来缓存,并且还有带流量控制的(throttling),同时其界面查询简单易用且易于扩展。

2.Graylog介绍

Graylog 日志监控系统Graylog 是一个开源的日志聚合、分析、审计、展现和预警工具。在功能上来说,和 ELK 类似,但又比 ELK 要简单很多。

依靠着更加简洁,高效,部署使用简单的优势很快受到许多人的青睐。当然,在扩展性上面确实没有比 ELK 好,但是其有商业版本可以选择。

2.1 Graylog 工作流程介绍

部署 Graylog 最简单的架构就是单机部署,复杂的也是部署集群模式,架构图示如下所示。
在这里插入图片描述
在这里插入图片描述

我们可以看到其中包含了三个组件,分别是 Elasticsearch、MongoDB 和 Graylog。

其中

  • Elasticsearch 用来持久化存储和检索日志文件数据(IO 密集)
  • MongoDB 用来存储关于 Graylog 的相关配置
  • Graylog 来提供 Web 界面和对外接口的(CPU 密集)

2.2 Graylog 组件功能

配置 Graylog 服务的核心就是理解对应组件的功能以及其运作方式!

简单来讲,Input 表示日志数据的来源,对不同来源的日志可以通过 Extractors 来进行日志的字段转换,比如将 Nginx 的状态码变成对应的英文表述等。

然后,通过不同的标签类型分组成不用的 Stream,并将这些日志数据存储到指定的Index 库中进行持久化保存。
在这里插入图片描述

Graylog 中的核心服务组件如下图所示:
在这里插入图片描述

具体流程如下:
1.Graylog 通过 Input 搜集日志,每个 Input 单独配置 Extractors 用来做字段转换。

2.Graylog 中日志搜索的基本单位是 Stream,每个 Stream 可以有自己单独的 Elastic Index Set,也可以共享一个 Index Set。

3.Extractor 在 System/Input 中配置。Graylog 中很方便的一点就是可以加载一条日志,然后基于这个实际的例子进行配置并能直接看到结果。

4.内置的 Extractor 基本可以完成各种字段提取和转换的任务,但是也有些限制,在应用里写日志的时候就需要考虑到这些限制。Input 可以配置多个 Extractors,按照顺序依次执行。

5.系统会有一个默认的 Stream,所有日志默认都会保存到这个 Stream 中,除非匹配了某个 Stream,并且这个 Stream 里配置了不保存日志到默认 Stream。

6.可以通过菜单 Streams 创建更多的 Stream,新创建的 Stream 是暂停状态,需要在配置完成后手动启动。

7.Stream 通过配置条件匹配日志,满足条件的日志添加 stream ID 标识字段并保存到对应的 Elastic Index Set 中。

8.Index Set 通过菜单 System/Indices 创建。日志存储的性能,可靠性和过期策略都通过 Index Set 来配置。

9.性能和可靠性就是配置 Elastic Index 的一些参数,主要参数包括,Shards 和 Replicas。

除了上面提到的日志处理流程,Graylog 还提供了 Pipeline 脚本实现更灵活的日志处理方案。

这里不详细阐述,只介绍如果使用 Pipelines 来过滤不需要的日志。下面是丢弃 level > 6 的所有日志的 Pipeline Rule 的例子。

rule "discard debug messages"
whento_long($message.level) > 6
thendrop_message();
end

从数据采集(input),字段解析(extractor),分流到 stream,再到 Pipeline 的清洗,一气呵成,无需在通过其他方式进行二次加工。

Sidecar 是一个轻量级的日志采集器,通过访问 Graylog 进行集中式管理,支持 Linux 和 windows 系统。

Sidecar 守护进程会定期访问 Graylog 的 REST API 接口获取 Sidecar 配置文件中定义的标签(tag),Sidecar 在首次运行时会从 Graylog 服务器拉取配置文件中指定标签(tag)的配置信息同步到本地。

目前 Sidecar 支持 NXLog,Filebeat 和 Winlogbeat。他们都通过 Graylog 中的 web 界面进行统一配置,支持 Beats、CEF、Gelf、Json API、NetFlow 等输出类型。

Graylog 最厉害的在于可以在配置文件中指定 Sidecar 把日志发送到哪个 Graylog 群集,并对 Graylog 群集中的多个 input 进行负载均衡,这样在遇到日志量非常庞大的时候,Graylog 也能应付自如。

日志集中保存到 Graylog 后就可以方便的使用搜索了。不过有时候还是需要对数据进行近一步的处理。

主要有两个途径:

  • 直接访问 Elastic 中保存的数据
  • 通过 Graylog 的 Output 转发到其它服务

更多grayLog的介绍可异步至:https://docs.graylog.org/docs

3.部署Graylog

新建一个docker-compose-graylog.yml 的内容:(PS:上面的官方使用文档中就有,也可以跟着我的思路直接复制粘贴也可以)

version: '3'
services:mongo:image: mongo:4.2networks:- graylogelasticsearch:image: docker.elastic.co/elasticsearch/elasticsearch-oss:7.10.2environment:- http.host=0.0.0.0- transport.host=localhost- network.host=0.0.0.0- "ES_JAVA_OPTS=-Dlog4j2.formatMsgNoLookups=true -Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1deploy:resources:limits:memory: 1gnetworks:- grayloggraylog:image: graylog/graylog:4.2environment:- GRAYLOG_PASSWORD_SECRET=somepasswordpepper- GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918- GRAYLOG_HTTP_EXTERNAL_URI=http://127.0.0.1:9000/ # 这里注意要改ip- GRAYLOG_TIMEZONE=Asia/Shanghai- GRAYLOG_ROOT_TIMEZONE=Asia/Shanghaientrypoint: /usr/bin/tini -- wait-for-it elasticsearch:9200 --  /docker-entrypoint.shnetworks:- graylogrestart: alwaysdepends_on:- mongo- elasticsearchports:- 9000:9000- 1514:1514- 1514:1514/udp- 12201:12201- 12201:12201/udp
networks:graylog:driver: bridg

这个文件里唯一需要改动的就是 ip

嗯,写完 docker-compose-graylog.yml 文件,直接运行:

docker-compose -f docker-compose-graylog.yml up -d

即可
在这里插入图片描述

如果没有安装docker-compose的可以移步至此:Docker-Compose安装教程
如果出现以下错误:

failed to create network docker-compose_graylog: Error response from daemon: plugin "bridg" not found

在这里插入图片描述

可以先通过指令:

docker network create docker-compose_graylog

注意:docker-compose_graylog需要和你报错的network名称一致
然后再输入启动指令

docker-compose -f docker-compose-graylog.yml up -d

启动以后,我们就可以通过 ip:port(127.0.0.1:9000) 访问对应的Graylog后台地址了,默认的账号和密码是 admin/admin启动以后,我们就可以通过 ip:port 访问对应的Graylog后台地址了
在这里插入图片描述

随后,我们配置下 inputs 的配置,找到 GELF UDP ,然后点击 Launch new input ,只需要填写 Title 字段,保存就可以了(其他不用动)。
在这里插入图片描述

在这里插入图片描述

至此,gray-log配置完成

4.SpringBoot集成GrayLog

4.1 引入依赖

<dependency><groupId>de.siegmar</groupId><artifactId>logback-gelf</artifactId><version>3.0.0</version>
</dependency>

4.2 新增相关配置

接着在项目的resources目录下,新建一个logback.xml文件,编辑文件内容如下:

<?xml version="1.0" encoding="UTF-8"?><configuration scan="true" scanPeriod="10 seconds"><contextName>logback</contextName><!-- 格式化输出:%date表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %msg:日志消息,%n是换行符--><property name="LOG_PATTERN" value="%date{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n"/><!--    <property name="LOG_PATTERN"--><!--              value="%red(%d{yyyy-MM-dd HH:mm:ss}) %green([%thread]) %highlight(%-5level) %boldMagenta(%logger) - %cyan(%msg%n)"/>--><!-- 定义日志存储的路径,不要配置相对路径 --><!--    <property name="FILE_PATH" value="C:/Users/NineSun/Desktop/log/identity-log.%d{yyyy-MM-dd}.%i.log"/>--><!--0. 日志格式和颜色渲染 --><!-- 彩色日志依赖的渲染类 --><conversionRule conversionWord="clr"converterClass="org.springframework.boot.logging.logback.ColorConverter"/><conversionRule conversionWord="wex"converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter"/><conversionRule conversionWord="wEx"converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter"/><!-- 彩色日志格式 --><property name="CONSOLE_LOG_PATTERN"value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}"/><appender name="GELF" class="de.siegmar.logbackgelf.GelfUdpAppender"><graylogHost>127.0.0.1</graylogHost><graylogPort>12201</graylogPort><!-- 最大GELF数据块大小(单位:字节),508为建议最小值,最大值为65467 --><maxChunkSize>508</maxChunkSize><!-- 是否使用压缩 --><useCompression>true</useCompression><encoder class="de.siegmar.logbackgelf.GelfEncoder"><!-- 是否发送原生的日志信息 --><includeRawMessage>true</includeRawMessage><includeMarker>true</includeMarker><includeMdcData>true</includeMdcData><includeCallerData>true</includeCallerData><includeRootCauseData>true</includeRootCauseData><!-- 是否发送日志级别的名称,否则默认以数字代表日志级别 --><includeLevelName>true</includeLevelName><shortPatternLayout class="ch.qos.logback.classic.PatternLayout"><pattern>%m%nopex</pattern></shortPatternLayout><fullPatternLayout class="ch.qos.logback.classic.PatternLayout"><pattern>%d - [%thread] %-5level %logger{35} - %msg%n</pattern></fullPatternLayout><!-- 配置应用名称(服务名称),通过staticField标签可以自定义一些固定的日志字段 --><staticField>app_name:test</staticField></encoder></appender><!-- 控制台输出日志 --><appender name="console" class="ch.qos.logback.core.ConsoleAppender"><!-- 日志级别过滤INFO以下 --><filter class="ch.qos.logback.classic.filter.ThresholdFilter"><level>info</level></filter><encoder><!-- 按照上面配置的LOG_PATTERN来打印日志 --><pattern>${CONSOLE_LOG_PATTERN}</pattern></encoder></appender><!-- 日志输出级别 --><root level="debug"><appender-ref ref="GELF"/><appender-ref ref="console"/></root>
</configuration>

在appilcation.properties配置文件中设置日志配置文件

logging.config=classpath:logback.xml

在这个配置信息里,唯一要改的也只是 ip 的地址,重新启动项目,到这里接入就完毕了,我们再打开控制台,就能看到日志的信息啦。
在这里插入图片描述

4.3 graylog常用操作

1.graylog各个功能介绍

在这里插入图片描述

2.报警与通知

在这里插入图片描述

由于报警与通知种类较多,后面会专出一篇文章来介绍,此处先跳过

3.stream流

这个过程也相对复杂一点,不在本文中赘述,防止影响篇幅,后面也会专门介绍,此处只简单介绍一下其功能

默认情况下是需要配置一个input 就可以自动与all-message streams绑定 做到开箱即用

但是我们有可能想对不同的项目,使用不同的streams 使用不同的索引管理日志,例如 nginx的日志保存3天 业务日志保存一个月

input streams index 的关系如下
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221250.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【STM32工具篇】使用CLion开发STM32

本文主要记录使用CLion开发STM32&#xff0c;并调试相关功能 使用的CLion版本&#xff1a;2023.3.1 CLion嵌入式配置教程&#xff1a;STM32CubeMX项目 |CLion 文档 (jetbrains.com) OpenOCD官网下载&#xff1a;Download OpenOCD for Windows (gnutoolchains.com) GNU ARM工…

C# 将 Word 转化分享为电子期刊

目录 需求 方案分析 相关库引入 关键代码 Word 转 Pdf Pdf 转批量 Jpeg Jpeg 转为电子书 实现效果演示 小结 需求 曾经的一个项目&#xff0c;要求实现制作电子期刊定期发送给企业进行阅读&#xff0c;基本的需求如下&#xff1a; 1、由编辑人员使用 Microsoft Word…

项目实战:自动驾驶之方向盘操纵

项目介绍 根据汽车前方摄像头捕捉的画面,控制汽车方向盘转动的方向和角度,这是自动驾驶要解决的核心问题。这个项目主要是通过使用深度神经网络解决一个回归问题。不同于分类、识别场景,回归问题中神经网络输出的是一个连续的值。 通过这个项目的学习,可以将神经网络用于通…

Oracle定时任务的创建与禁用/删除

在开始操作之前&#xff0c;先从三W开始&#xff0c;即我常说的what 是什么&#xff1b;why 为什么使用&#xff1b;how 如何使用。 一、Oracle定时器是什么 Oracle定时器是一种用于在特定时间执行任务或存储过程的工具&#xff0c;可以根据需求设置不同的时间段和频率来执行…

PostgresSQL数据库中分区和分表的区别以及PostgresSQL创建表分区分表示例

1.分区分表理解 数据库分区和分表都是数据库中常用的数据分散存储技术&#xff0c;但它们的实现方式和应用场景有所不同。 分表&#xff1a;将一个大的表拆分成多个小的表&#xff0c;每个子表存储一部分数据。分表可以减轻单个表的数据量&#xff0c;提高查询效率&#xff0c…

【计算机四级(网络工程师)笔记】操作系统概论

目录 一、OS的概念 1.1OS的定义 1.2OS的特征 1.2.1并发性 1.2.2共享性 1.2.3随机性 1.3研究OS的观点 1.3.1软件的观点 1.3.2资源管理器的观点 1.3.3进程的观点 1.3.4虚拟机的观点 1.3.5服务提供者的观点 二、OS的分类 2.1批处理操作系统 2.2分时操作系统 2.3实时操作系统 2.4嵌…

0基础学java-day21(网络编程)

一、网络的相关概念 1 网络通信 2 网络 3 ip 地址 4.ipv4 地址分类 5.域名 6 网络通信协议 7.网络通信协议 8.TCP 和 UDP 二、InetAddress 类 &Socket 1 相关方法 package com.hspedu.api;import java.net.InetAddress; import java.net.UnknownHostException;/*** …

Azure Machine Learning - 提示工程高级技术

本指南将指导你提示设计和提示工程方面的一些高级技术。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦硕&#xff0c;复旦机器人智能实验室成员&#xff0c;阿里云认证的资深架构师&#xff0c…

分布式链路追踪 —— 基于Dubbo的traceId追踪传递

文章目录 **原文链接&#xff0c;点击跳转**RpcContext 上下文对象Dubbo 过滤器&#xff08;Filter&#xff09;对象基于Dubbo的traceId追踪传递实现 原文链接&#xff0c;点击跳转 RpcContext 上下文对象 在实现 Dubbo 调用之间的链路跟踪之前&#xff0c;先简单了解 RpcCon…

【开源项目】WPF 扩展 -- 多画面视频渲染组件

目录 1、项目介绍 2、组件集成 2.1 下载地址 2.2 添加依赖 3、使用示例 3.1 启动动画 3.2 视频渲染 3.3 效果展示 4、项目地址 1、项目介绍 Com.Gitusme.Net.Extensiones.Wpf 是一款 Wpf 扩展组件。基于.Net Core 3.1 开发&#xff0c;当前是第一个发布版本 1.0.0&am…

node.js mongoose

目录 官方文档 mongoose Schema Model Query document 关系 官方文档 Mongoose v8.0.3: Getting Started mongoose Mongoose 是一个 Node.js 环境下 MongoDB 的对象建模工具。它提供了一种在应用程序中与 MongoDB 数据库进行交互的方式&#xff0c;使得开发者能够使用…

超结MOS/低压MOS在5G基站电源上的应用-REASUNOS瑞森半导体

一、前言 5G基站是5G网络的核心设备&#xff0c;实现有线通信网络与无线终端之间的无线信号传输&#xff0c;5G基站主要分为宏基站和小基站。5G基站由于通信设备功耗大&#xff0c;采用由电源插座、交直流配电、防雷器、整流模块和监控模块组成的电气柜。所以顾名思义&#xf…

石器时代H5小游戏架设教程

本文讲解石器时代 H5 之恐龙宝贝架设教程&#xff0c;想研究 H5 游戏如何实现&#xff0c;那请跟着此次教程学习在拥有小游戏源码的情况下该如何搭建起来 开始架设 1. 架设条件 石器时代架设需要准备&#xff1a; 一台linux 服务器&#xff0c;建议 CentOs 7.6 版本&#xf…

【ranger】CDP环境 更新 ranger 权限策略会发生低概率丢失权限策略的解决方法

一、问题描述&#xff1a; 我们的 kafka 服务在更新&#xff08;添加&#xff09; ranger 权限时&#xff0c;会有极低的概率导致 MM2 同步服务报错&#xff0c;报错内容 Not Authorized。但是查看 ranger 权限是赋予的&#xff0c;并且很早配置的权限策略也会报错。 相关组件…

JDK bug:ciObjectFactory::create_new_metadata:原因完全解析

文章目录 1、问题2.详细日志2.关键日志3.结论4.JDK&#xff1a;bug最终bug链接&#xff1a; 京东遇到过类似bug各位大佬如果有更详细的解答可以留言。 1、问题 服务不通&#xff0c;接口404&#xff0c;查看日志有一下截图&#xff0c;还有一个更详细的日志 2.详细日志 # #…

RPC(3):HttpClient实现RPC之GET请求

1HttpClient简介 在JDK中java.net包下提供了用户HTTP访问的基本功能&#xff0c;但是它缺少灵活性或许多应用所需要的功能。 HttpClient起初是Apache Jakarta Common 的子项目。用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包&#xff0c;并且它支持 H…

文件操作入门指南

目录 一、为什么使用文件 二、什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 三、文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 四、文件的顺序读写 ​编辑 &#x1f33b;深入理解 “流”&#xff1a; &#x1f342;文件的顺序读写函数介绍&#xff1a; …

VM安装Sonoma【笔记】

VMware Workstation安装MacOS Sonoma 1、配置虚拟机&#xff0c;根据系统性能调整参数&#xff1b; 2、先不焦急启动虚拟机&#xff0c;打开虚拟机存储目录&#xff0c;以文本方式打开.vmx文件&#xff08;这里以Sonoma.vmx为例&#xff09;&#xff1b; 这里只针对Inter CP…

Ansible自动化运维以及模块使用

ansible的作用 远程操作主机功能 自动化运维(playbook剧本基于yaml格式书写) ansible是基于python开发的配置管理和应用部署工具。在自动化运维中&#xff0c;现在是异军突起 ansible能够批量配置、部署、管理上千台主机。类似于Xshell的一键输入工具。不需要每次都切换主机…

监控k8s controller和scheduler,创建serviceMonitor以及Rules

目录 一、修改kube-controller和kube-schduler的yaml文件 二、创建service、endpoint、serviceMonitor 三、Prometheus验证 四、创建PrometheusRule资源 五、Prometheus验证 直接上干货 一、修改kube-controller和kube-schduler的yaml文件 注意&#xff1a;修改时要一个节…