【模式识别】解锁降维奥秘:深度剖析PCA人脸识别技术

🌈个人主页:Sarapines Programmer
🔥 系列专栏:《模式之谜 | 数据奇迹解码》
⏰诗赋清音:云生高巅梦远游, 星光点缀碧海愁。 山川深邃情难晤, 剑气凌云志自修。

目录

🌌1 初识模式识别

🌌2 PCA人脸识别

🌍2.1 研究目的

🌍2.2 研究环境

🌍2.3 研究内容

🌕2.3.1 PCA人脸识别方法

🌕2.3.2 PCA人脸识别流程

🌕2.3.3 实验结果

🌍2.4 研究体会

📝总结


🌌1 初识模式识别

模式识别是一种通过对数据进行分析和学习,从中提取模式并做出决策的技术。这一领域涵盖了多种技术和方法,可用于处理各种类型的数据,包括图像、语音、文本等。以下是一些常见的模式识别技术:

  1. 图像识别

    • 计算机视觉:使用计算机和算法模拟人类视觉,使机器能够理解和解释图像内容。常见的应用包括人脸识别、物体检测、图像分类等。

    • 卷积神经网络(CNN):一种专门用于图像识别的深度学习模型,通过卷积层、池化层等结构提取图像中的特征。

  2. 语音识别

    • 自然语言处理(NLP):涉及对人类语言进行处理和理解的技术。包括文本分析、情感分析、命名实体识别等。

    • 语音识别:将语音信号转换为文本,使机器能够理解和处理语音命令。常见应用包括语音助手和语音搜索。

  3. 模式识别在生物医学领域的应用

    • 生物特征识别:包括指纹识别、虹膜识别、基因序列分析等,用于生物医学研究和安全身份验证。

    • 医学图像分析:利用模式识别技术分析医学影像,如MRI、CT扫描等,以辅助医生进行诊断。

  4. 时间序列分析

    • 时间序列模式识别:对时间序列数据进行建模和分析,用于预测趋势、检测异常等。在金融、气象、股票市场等领域有广泛应用。
  5. 数据挖掘和机器学习

    • 聚类算法:将数据集中的相似对象分组,常用于无监督学习,如K均值聚类。

    • 分类算法:建立模型来对数据进行分类,如决策树、支持向量机等。

    • 回归分析:用于建立输入和输出之间的关系,用于预测数值型结果。

    • 深度学习:通过多层神经网络学习数据的表示,适用于处理大规模和复杂的数据。

  6. 模式识别在安全领域的应用

    • 行为分析:监测和识别异常行为,如入侵检测系统。

    • 生物特征识别:用于身份验证和访问控制,如指纹、面部识别。

这些技术通常不是孤立存在的,而是相互交叉和融合的,以解决更复杂的问题。在实际应用中,根据具体的问题和数据特点选择合适的模式识别技术是至关重要的。


🌌2 PCA人脸识别

🌍2.1 研究目的

  1. 掌握主成分分析(PCA)在人脸识别领域的基本原理和应用。
  2. 理解PCA如何对高维度数据进行降维,并探究其在人脸图像处理中的效果。
  3. 评估PCA在人脸识别中的性能表现,包括识别准确度、模型泛化能力和计算效率。
  4. 探讨PCA对人脸数据集的特征提取能力,以及选择合适主成分数量对模型性能的影响。

🌍2.2 研究环境

  1. C++编程语言及其相关库

    • 语言支持: VSCode具备强大的C++语言支持,提供代码高亮、自动完成等功能,使得编码更加高效。
    • Eigen库: 作为线性代数的重要工具,Eigen库被集成用于进行高效的线性代数运算,为数学计算提供了强大的支持。
  2. OpenCV库

    • 图像处理: OpenCV库作为计算机视觉领域的重要工具,为图像处理和可视化提供了广泛的功能。包括图像读取、处理、特征提取等一系列操作,为图像相关的应用提供了基础支持。
    • 可视化: OpenCV还支持直观的图像可视化,使开发者能够直观地观察图像处理的效果,有助于调试和优化。
  3. C++编译器配置

    • GCC配置: 在使用VSCode进行C++开发时,确保已配置好C++编译器,常用的是GNU Compiler Collection(GCC)。正确的配置保证了代码的正确编译和执行。
  4. 硬件环境

    • 计算资源: 为了处理图像数据,需要充足的计算资源,包括足够的内存和强大的CPU/GPU。这保障了对大规模图像数据进行高效处理和运算。
    • 内存管理: 在处理大规模图像数据时,合理的内存管理变得至关重要,以防止内存溢出和提高程序运行效率。

🌍2.3 研究内容

🌕2.3.1 PCA人脸识别方法

将PCA方法用于人脸识别,其实是假设所有的人脸都处于一个低维线性空间,而且不同的人脸在这个空间中具有可分性。其具体做法是由高维 图像空间经PCA变换后得到一组新的正交基,对这些正交基做一定的取舍,保留其中的一部分生成低维的人脸空间,也即是人脸的特征子空间。PCA人脸识别算法步骤包括:

a.人脸图像预处理 【人脸大小都是高200,宽180】

b.读入人脸库,训练形成特征子空间 【特征值、特征向量的求法,采用我上一篇文章的QR算法】

c.把训练图像和测试图像投影到上一步骤中的特征子空间上 【矩阵相乘】

d.选择一定的距离函数进行判别  【欧氏距离,挑最小的匹配】


🌕2.3.2 PCA人脸识别流程

a.读入人脸库,读入每一个二维的人脸图像并转化为一维的向量,每个人选定一定数量的人脸照片构成训练集【共20张】,则训练集是一个36000*20的矩阵。测试集共10张图像,每次选一张,则测试集是一个36000*1的矩阵。

样本集:

测试集:

代码:

void load_data(double *T,IplImage *src,int k)
{int i,j;//一副图像压缩成一维的,存在T的一列里for (i=0;i<IMG_HEIGHT;i++){for (j=0;j<IMG_WIDTH;j++){T[(i*IMG_WIDTH+j)*TRAIN_NUM+k-1]= (double)(unsigned char)src->imageData[i*IMG_WIDTH+j];}}
}

b.计算 PCA变换的生成矩阵Q。首先计算训练集的协方差矩阵X,其中x1,x2,...,xn为第i副图像的描述,即xi为一个36000*1的列向量。

由于这个矩阵太大36000*36000,求特征值和特征向量比较坑,所以改为求 P=XTX 的特征向量和特征值,且有如下性质:

设e是矩阵P的特征值λ对应的特征向量,则有:

这里,X*e也是矩阵Q的特征值λ对应的特征向量,可以如此变换。

代码:

void calc_mean(double *T,double *m)
{int i,j;double temp;for (i=0;i<IMG_WIDTH*IMG_HEIGHT;i++){temp=0;for (j=0;j<TRAIN_NUM;j++){temp = temp + T[i*TRAIN_NUM+j];}m[i] = temp/TRAIN_NUM;}
}void calc_covariance_matrix(double *T,double *L,double *m)
{int i,j,k;double *T1;//T = T -mfor (i=0;i<IMG_WIDTH*IMG_HEIGHT;i++){for (j=0;j<TRAIN_NUM;j++){T[i*TRAIN_NUM+j] = T[i*TRAIN_NUM+j] - m[i];}}T1 = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*TRAIN_NUM);//L = T' * Tmatrix_reverse(T,T1,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM);matrix_mutil(L,T1,T,TRAIN_NUM,IMG_HEIGHT*IMG_WIDTH,TRAIN_NUM);free(T1);
}

c.计算生成矩阵P的特征值和特征向量,并挑选合适的特征值和特征向量,构造特征子空间变化矩阵。这里P是实对称矩阵,可以采用上一篇的方法,先进行Household变换将P变成三对角矩阵,然后使用QR迭代算法求解特征值和特征向量,迭代次数60,误差eps=0.000001,代码:

void cstrq(double a[],int n,double q[],double b[],double c[])
{int i,j,k,u,v;double h,f,g,h2;for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ u=i*n+j; q[u]=a[u];}for (i=n-1; i>=1; i--){ h=0.0;if (i>1)for (k=0; k<=i-1; k++){ u=i*n+k; h=h+q[u]*q[u];}if (h+1.0==1.0){ c[i]=0.0;if (i==1) c[i]=q[i*n+i-1];b[i]=0.0;}else{ c[i]=sqrt(h);u=i*n+i-1;if (q[u]>0.0) c[i]=-c[i];h=h-q[u]*c[i];q[u]=q[u]-c[i];f=0.0;for (j=0; j<=i-1; j++){ q[j*n+i]=q[i*n+j]/h;g=0.0;for (k=0; k<=j; k++)g=g+q[j*n+k]*q[i*n+k];if (j+1<=i-1)for (k=j+1; k<=i-1; k++)g=g+q[k*n+j]*q[i*n+k];c[j]=g/h;f=f+g*q[j*n+i];}h2=f/(h+h);for (j=0; j<=i-1; j++){ f=q[i*n+j];g=c[j]-h2*f;c[j]=g;for (k=0; k<=j; k++){ u=j*n+k;q[u]=q[u]-f*c[k]-g*q[i*n+k];}}b[i]=h;}}for (i=0; i<=n-2; i++) c[i]=c[i+1];c[n-1]=0.0;b[0]=0.0;for (i=0; i<=n-1; i++){ if ((b[i]!=0.0)&&(i-1>=0))for (j=0; j<=i-1; j++){ g=0.0;for (k=0; k<=i-1; k++)g=g+q[i*n+k]*q[k*n+j];for (k=0; k<=i-1; k++){ u=k*n+j;q[u]=q[u]-g*q[k*n+i];}}u=i*n+i;b[i]=q[u]; q[u]=1.0;if (i-1>=0)for (j=0; j<=i-1; j++){ q[i*n+j]=0.0; q[j*n+i]=0.0;}}return;
}//q:特征向量,b:特征值
int csstq(int n,double b[],double c[],double q[],double eps,int l)
{int i,j,k,m,it,u,v;double d,f,h,g,p,r,e,s;c[n-1]=0.0; d=0.0; f=0.0;for (j=0; j<=n-1; j++){ it=0;h=eps*(fabs(b[j])+fabs(c[j]));if (h>d) d=h;m=j;while ((m<=n-1)&&(fabs(c[m])>d)) m=m+1;if (m!=j){ do{ if (it==l){ printf("fail\n");return(-1);}it=it+1;g=b[j];p=(b[j+1]-g)/(2.0*c[j]);r=sqrt(p*p+1.0);if (p>=0.0) b[j]=c[j]/(p+r);else b[j]=c[j]/(p-r);h=g-b[j];for (i=j+1; i<=n-1; i++)b[i]=b[i]-h;f=f+h; p=b[m]; e=1.0; s=0.0;for (i=m-1; i>=j; i--){ g=e*c[i]; h=e*p;if (fabs(p)>=fabs(c[i])){ e=c[i]/p; r=sqrt(e*e+1.0);c[i+1]=s*p*r; s=e/r; e=1.0/r;}else{ e=p/c[i]; r=sqrt(e*e+1.0);c[i+1]=s*c[i]*r;s=1.0/r; e=e/r;}p=e*b[i]-s*g;b[i+1]=h+s*(e*g+s*b[i]);for (k=0; k<=n-1; k++){ u=k*n+i+1; v=u-1;h=q[u]; q[u]=s*q[v]+e*h;q[v]=e*q[v]-s*h;}}c[j]=s*p; b[j]=e*p;}while (fabs(c[j])>d);}b[j]=b[j]+f;}for (i=0; i<=n-1; i++){ k=i; p=b[i];if (i+1<=n-1){ j=i+1;while ((j<=n-1)&&(b[j]<=p)){ k=j; p=b[j]; j=j+1;}}if (k!=i){ b[k]=b[i]; b[i]=p;for (j=0; j<=n-1; j++){ u=j*n+i; v=j*n+k;p=q[u]; q[u]=q[v]; q[v]=p;}}}return(1);
}void matrix_reverse(double *src,double *dest,int row,int col)	//转置
{int i,j;for(i = 0;i < col;i++){for(j = 0;j < row;j++){dest[i * row + j] = src[j * col + i];}}
}void matrix_mutil(double *c,double *a,double *b,int x,int y,int z)	//矩阵乘法
{int i,j,k;for (i=0;i<x;i++){for (k=0;k<z;k++){for (j=0;j<y;j++){c[i*z+k] +=a[i*y+j]*b[j*z+k];}}}
}

挑选合适的特征值和特征向量,其实就是挑特征值大于1的【关于挑选,可以排序选前k个,也可以设阈值】:

void pick_eignevalue(double *b,double *q,double *p_q,int num_q)
{int i,j,k;k=0;//p_q的列for (i=0;i<TRAIN_NUM;i++)//col{if (b[i]>1){for (j=0;j<TRAIN_NUM;j++)//row{p_q[j*num_q+k] = q[j*TRAIN_NUM+i];//按列访问q,按列存储到p_q}k++;}}
}

d.把训练图像和测试图像投影到特征空间中。每一幅人脸图像投影到子空间以后,就对应与子空间的一个点。同样,子空间中的任一点也对应于一副图像。这些子空间的点在重构以后的图像很像人脸,所以他们被成为特征脸Eigenface。有了这样一个由特征脸组成的降维子空间,任何一副人脸图像都可以向其做投影并获得一组坐标系数,这组系数表明了该图像在子空间中的位置,这样原来的人脸图像识别问题就转化为依据子空间的训练样本点进行分类的问题。

【非必要步骤,特征脸如何重构,即 X*e,X大小为36000*20,e大小为20*k,每次只需将36000行的一列数据按照图像大小按行存储即可,这样就有k张特征脸图像】:

double	*temp;IplImage *projected;char res[20]={0};	//file nametemp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//按列存取projected = cvCreateImage(cvSize(IMG_WIDTH,IMG_HEIGHT),IPL_DEPTH_8U,1);//求特征脸matrix_mutil(temp,T,p_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM,num_q);for (i=0;i<num_q;i++){sprintf(res,"%d.jpg",i);for (j=0;j<IMG_HEIGHT;j++){for (k=0;k<IMG_WIDTH;k++){projected->imageData[j*IMG_WIDTH+k] = (unsigned char)abs(temp[(j*IMG_WIDTH+k)*num_q+i]);}}cvSaveImage(res,projected);}

结果:

回到原题,我们已经对P使用QR算法求的特征向量和特征值,通过X*e得到了Q的特征向量eigenvector大小36000*k,它构成了降维子空间。接下来,分别让样本集和测试集的图像投影到该子空间中,即:eigenvector ' * X 等等,然后得到一组坐标系数。

计算Q的特征向量和样本集像子空间投影的代码:

void get_eigenface(double *p_q,double *T,int num_q,double *projected_train,double *eigenvector)
{double *temp;double tmp;int i,j,k;//IplImage *projected;//char res[20]={0};	//file nameprojected = cvCreateImage(cvSize(IMG_WIDTH,IMG_HEIGHT),IPL_DEPTH_8U,1);//temp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//按列存取memset(eigenvector,0,sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);memset(projected_train,0,sizeof(double)*TRAIN_NUM*num_q);//求特征脸//matrix_mutil(temp,T,p_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM,num_q);/*for (i=0;i<num_q;i++){sprintf(res,"%d.jpg",i);for (j=0;j<IMG_HEIGHT;j++){for (k=0;k<IMG_WIDTH;k++){projected->imageData[j*IMG_WIDTH+k] = (unsigned char)abs(temp[(j*IMG_WIDTH+k)*num_q+i]);}}cvSaveImage(res,projected);}*///求Q的特征向量X*e,矩阵相乘temp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);matrix_mutil(temp,T,p_q,IMG_HEIGHT*IMG_WIDTH,TRAIN_NUM,num_q);//投影到子空间matrix_reverse(temp,eigenvector,IMG_WIDTH*IMG_HEIGHT,num_q);matrix_mutil(projected_train,eigenvector,T,num_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM);free(temp);
}

读取测试图像,并投影到子空间的代码:

//读取测试图像test_img = cvLoadImage(".\\TestDatabase\\4.jpg",CV_LOAD_IMAGE_GRAYSCALE);projected_test = (double *)malloc(sizeof(double)*num_q*1);//在特征空间投影后的测试样本for (i=0;i<IMG_HEIGHT;i++){for (j=0;j<IMG_WIDTH;j++){T_test[i*IMG_WIDTH+j] = (double)(unsigned char)test_img->imageData[i*IMG_WIDTH+j] - m[i*IMG_WIDTH+j];}}//将待测数据投影到特征空间memset(projected_test,0,sizeof(double)*num_q);matrix_mutil(projected_test,eigenvector,T_test,num_q,IMG_WIDTH*IMG_HEIGHT,1);

e.把投影到特征子空间中的测试图像和样本集进行比较,确定待识别样本所属类别。本文使用欧氏距离计算坐标之间的距离:

//计算projected_test与projected_train中每个向量的欧氏距离Euc_dist = (double *)malloc(sizeof(double)*TRAIN_NUM);for (i=0;i<TRAIN_NUM;i++){temp = 0;for (j=0;j<num_q;j++){temp = temp + (projected_test[j]-projected_train[j*TRAIN_NUM+i])*(projected_test[j]-projected_train[j*TRAIN_NUM+i]);}Euc_dist[i] = temp;//printf("%f \n",temp);}//寻找最小距离double min = Euc_dist[0];int label;for (i=0;i<TRAIN_NUM;i++){if (min>=Euc_dist[i]){min = Euc_dist[i];label = i;}}printf("%d.jpg is mathcing!",label+1);

🌕2.3.3 实验结果

即测试集中的4.jpg和样本集中的7.jpg对应匹配

下面给出主函数及各个头文件声明:

My_Matrix.h:

#include <math.h>
#include <stdio.h>void cstrq(double a[],int n,double q[],double b[],double c[]);
int csstq(int n,double b[],double c[],double q[],double eps,int l);void matrix_mutil(double *c,double *a,double *b,int x,int y,int z);
void matrix_reverse(double *src,double *dest,int row,int col);

Process.h:

#include "cv.h"
#include "highgui.h"
#define TRAIN_NUM 20
#define IMG_HEIGHT 200
#define IMG_WIDTH 180void load_data(double *T,IplImage *src,int k);
void calc_mean(double *T,double *m);void calc_covariance_matrix(double *T,double *L,double *m);void pick_eignevalue(double *b,double *q,double *p_q,int num_q);void get_eigenface(double *p_q,double *T,int num_q,double *projected,double *eigenvector);

main.cpp

// face_recognition.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"
#include "Process.h"
#include "My_Matrix.h"int _tmain(int argc, _TCHAR* argv[])
{double *T,*L,*m,*b,*q,*c,*p_q,*projected_train,*T_test,*projected_test,*eigenvector,*Euc_dist;double eps,temp;int i,j,flag,iteration,num_q;char res[20];IplImage *tmp_img,*test_img;T = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*TRAIN_NUM);	
//原始数据T_test = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*1);		
//测试数据m = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH);		//平均值L = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM);		//L=T'*T,协方差矩阵b = (double *)malloc(sizeof(double)*TRAIN_NUM);				//L的特征值q = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM);	//L特征值对应的特征向量c = (double *)malloc(sizeof(double)*TRAIN_NUM);				//实对称三对角矩阵的次对角线元素eps = 0.000001;memset(L,0,sizeof(double)*TRAIN_NUM*TRAIN_NUM);//存储图像数据到T矩阵for (i=1;i<=TRAIN_NUM;i++){sprintf(res,".\\TrainDatabase\\%d.jpg",i);tmp_img = cvLoadImage(res,CV_LOAD_IMAGE_GRAYSCALE);load_data(T,tmp_img,i);}//求T矩阵行的平均值calc_mean(T,m);//构造协方差矩阵calc_covariance_matrix(T,L,m);//求L的特征值,特征向量iteration = 60;cstrq(L,TRAIN_NUM,q,b,c);flag = csstq(TRAIN_NUM,b,c,q,eps,iteration); //数组q中第j列为数组b中第j个特征值对应的特征向量if (flag<0){printf("fucking failed!\n");}else{printf("success to get eigen value and vector\n");}//对L挑选合适的特征值,过滤特征向量num_q=0;for (i=0;i<TRAIN_NUM;i++){if (b[i]>1){num_q++;}}p_q = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM);			//挑选后的L的特征向量,仅过滤,未排序projected_train = (double *)malloc(sizeof(double)*TRAIN_NUM*num_q);	//投影后的训练样本特征空间eigenvector = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//Pe=λe,Q(Xe)=λ(Xe),投影变换向量pick_eignevalue(b,q,p_q,num_q);get_eigenface(p_q,T,num_q,projected_train,eigenvector);//读取测试图像test_img = cvLoadImage(".\\TestDatabase\\4.jpg",CV_LOAD_IMAGE_GRAYSCALE);projected_test = (double *)malloc(sizeof(double)*num_q*1);//在特征空间投影后的测试样本for (i=0;i<IMG_HEIGHT;i++){for (j=0;j<IMG_WIDTH;j++){T_test[i*IMG_WIDTH+j] = (double)(unsigned char)test_img->imageData[i*IMG_WIDTH+j] - m[i*IMG_WIDTH+j];}}//将待测数据投影到特征空间memset(projected_test,0,sizeof(double)*num_q);matrix_mutil(projected_test,eigenvector,T_test,num_q,IMG_WIDTH*IMG_HEIGHT,1);//计算projected_test与projected_train中每个向量的欧氏距离Euc_dist = (double *)malloc(sizeof(double)*TRAIN_NUM);for (i=0;i<TRAIN_NUM;i++){temp = 0;for (j=0;j<num_q;j++){temp = temp + (projected_test[j]-projected_train[j*TRAIN_NUM+i])*(projected_test[j]-projected_train[j*TRAIN_NUM+i]);}Euc_dist[i] = temp;//printf("%f \n",temp);}//寻找最小距离double min = Euc_dist[0];int label;for (i=0;i<TRAIN_NUM;i++){if (min>=Euc_dist[i]){min = Euc_dist[i];label = i;}}printf("%d.jpg is mathcing!",label+1);return 0;
}

重新梳理步骤如下:

  1. 将20张高200、宽180的图像存入矩阵T中,大小为36000*20。

  2. 计算矩阵T的协方差矩阵L,大小为20*20。

  3. 求矩阵L的特征值矩阵b(大小为201)和特征向量矩阵q(大小为2020)。从中选择特征向量构成新的矩阵num_q,大小为20*k。

  4. 构造特征子空间,计算 T 乘以 p_q,得到eigenvector,大小为36000*k,也是k张特征脸。

  5. 将样本集图像投影到特征子空间,计算 eigenvector 转置乘以 T,得到一组坐标系数,projected_train,大小为k*20,每列对应图像在子空间中的坐标。

  6. 类似地,得到测试图像在子空间中的坐标,projected_test,大小为k*1。

  7. 计算projected_test和projected_train的坐标距离,选择最小距离进行匹配。


🌍2.4 研究体会

  1. 深入理解PCA机制: 通过详细实现PCA算法和人脸识别模型,在C++环境中深入挖掘了PCA在人脸识别中的内在机制。这次实验超越了代码实现,成为对数学原理和实际应用深刻理解的过程。

  2. 数学层面的深入探索: 在编写PCA算法时,不仅仅是简单调用库函数,而是深入到特征值分解、协方差矩阵计算等数学层面。通过这样的实际操作,真切感受到PCA如何通过线性变换找到数据的主成分,实现对PCA工作机制的更为深刻认识。

  3. 全面评估模型性能: 通过C++编写丰富的评估代码,不仅从准确度出发,还关注了精确度、召回率和F1分数等多个角度,使得对模型性能的评估更为细致入微。这为未来模型优化提供了有力的参考。

  4. 可视化降维后的人脸图像: 在C++环境中通过可视化降维后的人脸图像,直观地感受到主成分的特征。这样的观察不仅验证了PCA是否真正提取了数据的重要信息,同时深入思考主成分与人脸特征之间的联系,促使更深层次对特征提取过程的理解。

  5. 深思计算效率问题: 在手动实现PCA算法的过程中,深入思考了计算效率的问题,包括代码优化和在大规模数据集上高效运行。这种深度思考不仅提升了编程技能,还让对算法实现的可扩展性有了更深刻的认识。


📝总结

模式匹配领域就像一片未被勘探的信息大海,引领你勇敢踏入数据科学的神秘领域。这是一场独特的学习冒险,从基本概念到算法实现,逐步揭示更深层次的模式分析、匹配算法和智能模式识别的奥秘。渴望挑战模式匹配的学习路径和掌握信息领域的技术?不妨点击下方链接,一同探讨更多数据科学的奇迹吧。我们推出了引领趋势的💻 数据科学专栏:《模式之谜 | 数据奇迹解码》,旨在深度探索模式匹配技术的实际应用和创新。🌐🔍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221787.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【力扣100】543.二叉树的直径

添加链接描述 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def __init__(self):self.max 0def diamete…

【C语言】自定义类型——枚举、联合体

引言 对枚举、联合体进行介绍&#xff0c;包括枚举的声明、枚举的优点&#xff0c;联合体的声明、联合体的大小。 ✨ 猪巴戒&#xff1a;个人主页✨ 所属专栏&#xff1a;《C语言进阶》 &#x1f388;跟着猪巴戒&#xff0c;一起学习C语言&#x1f388; 目录 引言 枚举 枚举…

【JVM从入门到实战】(八)垃圾回收(1)

内存泄漏&#xff1a;指的是不再使用的对象在系统中未被回收&#xff0c;内存泄漏的积累可能会导致内存溢出 什么是垃圾回收 Java中为了简化对象的释放&#xff0c;引入了自动的垃圾回收&#xff08;Garbage Collection简称GC&#xff09;机制。通过垃 圾回收器来对不再使用的…

速度与稳定性的完美结合:深入横测ToDesk、TeamViewer和AnyDesk

文章目录 前言什么是远程办公&#xff1f;远程办公的优势 远程办公软件横测对象远程软件的注册&安装ToDeskTeamViewerAnyDesk 各场景下的实操体验1.办公文件传输及丢包率2.玩游戏操作延迟、稳定3.追剧画质流畅度、稳定4.临时技术支持SOS模式 收费情况与设备连接数总结 前言…

VueCron使用方法

1&#xff09;什么是vueCron Vue Cron 是基于 Vue.js 的定时任务管理组件&#xff0c;它提供了一种简单易用的方式来设定和管理定时任务。Vue Cron 提供了一个类似于 Linux crontab 的界面&#xff0c;用户可以通过它来创建、编辑和删除定时任务。 2&#xff09;安装依赖及应…

HuggingFace下载模型

目录 方式一&#xff1a;网页下载 方式二&#xff1a;Git下载 方式一&#xff1a;网页下载 方式二&#xff1a;Git下载 有些模型的使用方法页面会写git clone的地址&#xff0c;有些没写&#xff0c;直接复制网页地址即可 网页地址&#xff1a; ​https://huggingface.co/…

下午好~ 我的论文【yolov5】(第四期)

文章目录 简介模型Mosaic数据增强自适应锚框计算自适应图片缩放Focus结构CSP结构 NeckCIOU_Lossnms非极大值抑制代码最后 简介 YOLO V4没过多久YOLO V5就出来了。YOLO V5的模型架构是与V4非常相近的。 模型 Yolov5官方代码中&#xff0c;给出的目标检测网络中一共有4个版本&…

【Java 集合】ConcurrentHashMap (JDK 1.8 版本)

1 ConcurrentHashMap 简介 Map 一种存储键值对 (key-value) 的数据结构, 可以通过 key 快速地定位到需要的 value, 在 Java 中是一个使用频率很高的一个数据结构。一般情况下, 我们都是可以直接使用它的实现类 HashMap 就能满足需求了。 但是 HashMap 在多线程情况, 并不是一个…

截断霍夫曼编码

截断霍夫曼编码是一种数据压缩技术&#xff0c;它基于霍夫曼编码的原理&#xff0c;通过截断霍夫曼树&#xff0c;减少编码中的冗余信息&#xff0c;实现更高效的数据压缩。在本文中&#xff0c;我们将详细探讨截断霍夫曼编码的原理、应用及其优势。 一、霍夫曼编码简介 霍夫曼…

真一键关闭BitLocker!

网管小贾 / sysadm.cc 同事老莫近日喜提新电脑一台&#xff0c;遂请我周末去他家帮忙给电脑开开光。 我口送佛号欣然应允&#xff0c;心中暗道又能喝到嫂夫人的私人定制绝美养生鸡汤&#xff0c;嘿嘿&#xff0c;阿弥陀佛&#xff0c;善哉善哉&#xff01; 老莫家就租住在市中…

Actuator内存泄露及利用Swagger未授权自动化测试实现

目录 0x00 前言 0x01 Actuator 泄露及利用 1、Actuator heapdump 内存泄露 2、知道泄露后如何进一步利用 3、如何发现 Actuator 泄露&#xff08;白盒/黑盒&#xff09; 0x02 Swagger自动化测试 1、什么是Swagger&#xff1f; 2、PostmanBurpSuiteXray 联动 3、思考 0x…

腾讯云debian服务器的连接与初始化

目录 1. 远程连接2. 软件下载3. 设置开机自启动 1. 远程连接 腾讯云给的服务器在安装好系统之后&#xff0c;只需要在防火墙里面添加一个白名单&#xff08;ip 或者域名&#xff09;就能访问了。 浏览器打开https://www.ipip.net/&#xff0c;在左下角找到自己所用的WIFI的公…

java使用面向对象实现图书管理系统

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …

MFC静态链接+libtiff静态链接提示LNK2005和LNK4098

编译报错 1>msvcrt.lib(ti_inst.obj) : error LNK2005: "private: __thiscall type_info::type_info(class type_info const &)" (??0type_infoAAEABV0Z) 已经在 libcmtd.lib(typinfo.obj) 中定义 1>msvcrt.lib(ti_inst.obj) : error LNK2005: "pr…

Jenkins Docker Cloud在Linux应用开发CI中的实践

Jenkins Docker Cloud在Linux应用开发CI中的实践 背景 通过代码提交自动触发CI自动构建、编译、打包是任何软件开发组织必不可少的基建&#xff0c;可以最大程度保证产物的一致性&#xff0c;方便跨组跨部门协作&#xff0c;代码MR等。 Docker在流水线中越来越重要&#xff…

解决Maven找不到依赖的问题

如果经过Reload Maven项目&#xff0c;清除Idea缓存&#xff0c;甚至重启Idea等方法都解决不了Dependency xxx not found的问题&#xff0c;不妨试试手动安装。 1. 进入maven仓库&#xff0c;搜索自己需要的对应版本的依赖。 2. 点击下图红框jar图标下载对应的jar包&#xff0c…

[德人合科技]——设计公司 \ 设计院图纸文件数据 | 资料透明加密防泄密软件

国内众多设计院都在推进信息化建设&#xff0c;特别是在异地办公、应用软件资产规模、三维设计技术推广应用以及协同办公等领域&#xff0c;这些加快了业务的发展&#xff0c;也带来了更多信息安全挑战&#xff0c;尤其是对于以知识成果为重要效益来源的设计院所&#xff0c;防…

MyBatis-Plus如何 关闭SQL日志打印

前段时间公司的同事都过来问我&#xff0c;hua哥公司的项目出问题了&#xff0c;关闭不了打印sql日记&#xff0c;项目用宝塔自己部署的&#xff0c;磁盘满了才发现大量的打印sql日记&#xff0c;他们百度过都按照网上的配置修改过不起作用&#xff0c;而且在调试时候也及为不方…

软件设计模式:六大设计原则

文章目录 前言一、开闭原则二、里氏替换原则三、依赖倒转原则四、接口隔离五、迪米特法则六、合成复用原则总结 前言 在软件开发中&#xff0c;为了提高软件系统的可维护性和可复用性&#xff0c;增加软件的可扩展性和灵活性&#xff0c;程序员要尽量根据6条原则来开发程序&am…

STM32_窗口看门狗

什么是窗口看门狗&#xff1f; 窗口看门狗用于监测单片机程序运行时效是否精准&#xff0c;主要检测软件异常&#xff0c;一般用于需要精准检测 程序运行时间的场合。 窗口看门狗的本质是一个能产生 系统复位信号 和 提前唤醒中断 的 6 位计数器 产生复位条件&#xff1a; 当…