智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.饥饿游戏算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用饥饿游戏算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.饥饿游戏算法

饥饿游戏算法原理请参考:https://blog.csdn.net/u011835903/article/details/122305294
饥饿游戏算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

饥饿游戏算法参数如下:

%% 设定饥饿游戏优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明饥饿游戏算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

xcode无线真机调试详细图文步骤

步骤一、 步骤二: 步骤三: 配置完到这里,点击真机右键,菜单栏并未出现connect via ip address 选项,也没出现无线连接的小地球图标,别慌,接着进行下一步操作即可。 步骤四: 1.打开…

【Linux】冯诺依曼体系结构与操作系统及其进程

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:了解冯诺依曼体系结构与操作系统,掌握…

使用ultralytics(YOLOv8)实现RT-Detr

b站视频:https://www.bilibili.com/video/BV12C4y1S75H/ 1 使用ultralytics(YOLOv8)实现RT-Detr https://github.com/ultralytics/ultralytics/blob/a5735724c54a9f5bcb239c151fefbd1337d7123d/docs/zh/models/rtdetr.md 2 安装 YOLOv8安装…

分享一个项目——Sambert UI 声音克隆

文章目录 前言一、运行ipynb二、数据标注三、训练四、生成总结 前言 原教程视频 项目链接 运行一个ipynb,就可操作 总共四步 1)运行ipynb 2)数据标注 3)训练 4)生成 一、运行ipynb 等运行完毕后,获得该…

【powershell】Windows环境powershell 运维之历史文件压缩清理

🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&am…

关于“Python”的核心知识点整理大全31

目录 12.4.2 在屏幕上绘制飞船 alien_invasion.py ​编辑12.5 重构:模块 game_functions 12.5.1 函数 check_events() game_functions.py alien_invasion.py 12.5.2 函数 update_screen() game_functions.py alien_invasion.py 12.6 驾驶飞船 12.6.1 响应…

虚拟机类加载机制

虚拟机类加载机制 什么是虚拟机的类加载机制? Java虚拟机将描述类的Class文件加载到内存中,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程叫做虚拟机的类加载机制 类加载的时机 一个类…

【MATLAB】史上最全的25种信号分解算法全家桶

有意向获取代码,请转文末观看代码获取方式~ 1 【MATLAB】EMD 信号分解算法 EMD 是一种信号分解方法,它将一个信号分解成有限个本质模态函数 (EMD) 的和,每个 EMD 都是具有局部特征的振动模式。EMD 分解的主要步骤如下: 将信号的…

机器学习数据的清洗,转化,汇总及建模完整步骤(基于Titanic数据集)

目录 介绍: 一、数据 二、检查数据缺失 三、数据分析 四、数据清洗 五、数据类别转化 六、数据汇总和整理 七、建模 介绍: 线性回归是一种常用的机器学习方法,用于建立一个输入变量与输出变量之间线性关系的预测模型。线性回归的目标…

3-10岁孩子语文能力培养里程碑

文章目录 基础能力3岁4岁5岁6-7岁(1-2年级)8-9岁(3-4年级)10岁(5年级) 阅读推荐&父母执行3岁4-5岁6-7岁(1-2年级)8-9岁(3-4年级)10岁(5年级&a…

Elasticsearch:什么是文本分类?

文本分类定义 - text classification 文本分类是一种机器学习,它将文本文档或句子分类为预定义的类或类别。 它分析文本的内容和含义,然后使用文本标签为其分配最合适的标签。 文本分类的实际应用包括情绪分析(确定评论中的正面或负面情绪&…

Linux操作系统(ACL)

ACL (针对特殊用户的特殊权限) 访问控制列表,可以针对文件和目录 ACL的真正效果主要体现在对文件的操作上 1. 如何查看ACL信息:getfacl 文件名(文件路径) 2. 如何设置普通文件ACL信息:setfacl -m u:用户名:权限 文件名 现在要求…

JVM垃圾收集器三色标记算法

垃圾收集算法 分代收集理论 当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比…

NFT获工信部首肯!“符合中国国情”的Web3.0发展战略即将问世!

今年3月,香港立法会议员吴杰庄在出席中国全国两会时,提出《关于推动Web3.0产业发展的提案》,针对中国加强Web3.0技术研发、建立标准和培养人才等几方面提岀意见。 本月19日,中国工信部针对该提案提交答复,称该部高度重…

关于“Python”的核心知识点整理大全33

目录 12.8.3 将子弹存储到编组中 alien_invasion.py 注意 12.8.4 开火 game_functions.py 12.8.5 删除已消失的子弹 alien_invasion.py 12.8.6 限制子弹数量 settings.py game_functions.py 12.8.7 创建函数 update_bullets() game_functions.py alien_invasion.py…

【智慧之窗】AI驱动产品探索

一.初识 ChatGPT ChatGPT 是由 OpenAI 开发的自然语言处理(NLP)模型,基于 GPT(Generative Pre-trained Transformer)架构。GPT 系列的模型旨在理解和生成自然语言文本。ChatGPT 专注于支持对话性任务,即与…

如何通过ETLCloud的API对接功能实现各种SaaS平台数据对接

前言 当前使用SaaS系统的企业越来越多,当我们需要对SaaS系统中产生的数据进行分析和对接时就需要与SaaS系统提供的API进行对接,因为SaaS一般是不会提供数据库表给企业,这时就应该使用ETL(Extract, Transform, Load)的…

Spring MVC控制层框架

三、Spring MVC控制层框架 目录 一、SpringMVC简介和体验 1. 介绍2. 主要作用3. 核心组件和调用流程理解4. 快速体验 二、SpringMVC接收数据 1. 访问路径设置2. 接收参数(重点) 2.1 param 和 json参数比较2.2 param参数接收2.3 路径 参数接收2.4 json参…

Opencv入门五 (显示图片灰度值)

源码如下&#xff1a; #include <opencv2/opencv.hpp> int main(int argc, char** argv) { cv::Mat img_rgb, img_gry, img_cny; cv::namedWindow("Example Gray",cv::WINDOW_AUTOSIZE); cv::namedWindow("Example Canny", cv::WINDOW_…

Qt跨线程的槽函数执行

定义两个类&#xff1a;Receiver接收信号&#xff0c;等待2秒后执行。Sender发送信号触发Receiver槽函数的执行 class Receiver : public QObject {Q_OBJECT public slots:void exec() {QThread::sleep(1);qDebug() << QThread::currentThreadId() << "recei…