C语言数据结构-排序

文章目录

  • 1 排序的概念及运用
    • 1.1 排序的概念
    • 1.2 排序的应用
  • 2 插入排序
    • 2.1 直接插入排序
    • 2.2 希尔排序
    • 2.3 直接排序和希尔排序对比
  • 3 选择排序
    • 3.1 堆排序
    • 3.2 直接选择排序
  • 4 交换排序
    • 4.1 冒泡排序
    • 4.2 快速排序
      • 4.2.1 挖坑法1
      • 4.2.2 挖坑法2
      • 4.2.3 挖坑法3
  • 5 并归排序
  • 6 十万级别数据测试


1 排序的概念及运用

1.1 排序的概念

排序:使一串记录按照其中的某个或某些关键字的大小,递增或递减的排列的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

1.2 排序的应用

某商城截图

2 插入排序

从初始有序的序列开始,不断地把新的元素插入前面已经排好的序列中,当等待排序的数据元素都插入到前面排好的序列是,排序结束。这种排序方法就是“插入排序”。我们在这里讲“直接插入排序”和“希尔排序”。

2.1 直接插入排序

直接插入排序逐个处理待处理的元素,每个新元素与前面已排序的子序列中的元素进行比较将它插入到子序列中正确的位置。
对n个待排序的元素,直接插入排序先取出第二个元素,根据元素的值将其插入已排序的子序列(此时子序列只有第一个元素),再将第三个元素插入到前面已排序的子序列(此时子序列有第一个和第二个元素)中合适的位置,接下来每一个元素都是这样,知道最后一个元素为止。
直接插入排序的时间复杂度是O(n*n)

拿出来一个数组a[]={"91","67","31","62","30","72","46"},排序解析见下图。
直接插入排序图解

从下标i=0开始,最后一次进行比较时a[i-1]于a[n]比较,循环内i的范围就是i<n-1
在子序列进行比较时,子序列的最大下标再最差情况下(逆序)正好满足循环次数,就设定了int end=i;,然后,a[end+1]与子序列进行比较,像上图所示

//1 插入排序,排序结果从小到大
void InsertSort(int* a, int n)	//传入数组a,数组a的元素个数n
{for (int i = 0; i < n-1; i++){//end始终是一组循环内最后一个下标int end = i;//用t保存a[end+1]int t = a[end + 1];while (end >= 0){if (a[end] > t){//新元素的值小,下标end+1存放a[end]较大的数a[end + 1] = a[end];//end减一,继续在子循环中比较end--;}else{break;}}a[end + 1] = t;	//退出while循环,这时候end的值或已改变,经while后比他大的值已经向后挪一位,填充a[end+1],这里体现提前保存a[end+1]的作用}
}

上述接口完成,我们进行测试,以下在编译器中测试:
再次封装,后续写入其他排序方法更方便调试。

#include<stdio.h>void PrintArray(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ", a[i]);}
}void InsertSort(int* a, int n)
{for (int i = 0; i < n-1; i++){int end = i;//用t保存a[end+1]int t = a[end + 1];while (end >= 0){if (a[end] > t){a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = t;}
}void  TestInsertSort()
{int a[] = { 3,6,9,2,5,8,1,4,7 };InsertSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}int main()
{TestInsertSort();  return 0;
}

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

2.2 希尔排序

希尔排序又称缩小增量排序。直接插入排序的时间复杂度是O(n*n),但是,排序元素正序时,时间复杂度就是O(n),希尔排序将待排序元素变得“基本有序”,然后再调用直接插入排序完成最后的排序。
(1)实现过程:先选定一个比n小的整数gap,把待排序文件中所有记录分成gap个组(正好可以分成gap组),所有距离为gap的记录下来的元素分在同一组内,再对每一组内的记录进行排序。再取gap更小的数,直到gap为1,所有记录在同一组中进行直接插入排序。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){//分组,设置步长gapgap = gap / 3 + 1;for (int i = 0; i < n - gap; i++){int end = i;int t = a[end + gap];while (end>=0){if (a[end] > t){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = t;}}
}void PrintArray(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ", a[i]);}
}//封装成测试函数
void TestShellSort()
{int a[] = { 3,6,9,2,5,8,1,4,7 };ShellSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}int main()
{TestShellSort();return 0;
}

2.3 直接排序和希尔排序对比

放置了测试的接口在release版本(测试比debug快)下,比较直接排序和希尔排序

void TestOP()
{srand(time(0));const int N = 1000000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);free(a1);free(a2);}

在这里插入图片描述
通过测试发现希尔排序处理上述百万级别的数据花了122ms,而直接插入排序耗时81798ms。
在这里插入图片描述

3 选择排序

基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

3.1 堆排序

堆排序

堆的逻辑结构是一颗完全二叉树,堆的物理机构是一个数组
我们通过下标父子节点关系发现小堆的特点
leftchild = parent * 2 + 1;
rightchild = parent * 2 + 2
堆的两个特性:
1 结构性:用数组表示的完全二叉树
2 有序性:任一节点的关键字是其子树的所有节点的最大值(或最小值)
最大堆(MaxHeap)可以保证根是最大值。大堆要求树中所有的父亲都大于等于孩子。
最小堆(MinHeap)可以保证根是最小值。小堆要求所有的父亲都小于等于孩子。

小堆数组形式

建小堆使用向下调整算法。
向下调整法是让父亲结点与其孩子节点进行比较,比父亲节点小就交换。一直调整,直到碰到叶子节点终止。当左右子树不是小堆,就不能直接使用向下调整算法了,怎么办?倒着从最后一棵非叶子节点开始调整
我们排列升序数组,是建立大堆!!!选择排序,通过堆来选树。如果建立小堆,最小值在堆顶被选出来,在剩下数中再选数,但是剩下树结构乱了,需要重新建堆。建堆的时间复杂度是O(n),那堆排序时间复杂度就是O(n*n)。我们建立大堆,最大的数与最小的交换位置。忽视最大数,只看剩下n-1个数,n-1个数向下调整,选出第二大的数,再跟倒数第二个数交换位置。再往下交换……
此时堆排序的时间复杂度就是O(nlogn)。

void Swap(int* p1, int* p2)
{int t = *p1;*p1 = *p2;*p2 = t;
}
//向下调整算法
void AdjustDwon(int* a, int n, int root)
{int parent = root;int child = parent * 2 + 1;     //默认左孩子while (child<n){//选出左右节点中较大的一个if (child + 1 < n && a[child + 1] > a[child]){child += 1;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapSort(int* a, int n)
{//建堆for (int i = (n-1-1)/2; i >=0; i--){AdjustDwon(a, n, i);}int end = n - 1;while (end>0){Swap(&a[0], &a[end]);AdjustDwon(a, end, 0);end--;}
}//封装测试函数
void TestHeapSort()
{int a[] = { 3,6,9,2,5,8,1,4,7 };HeapSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}int main()
{TestHeapSort();return 0;
}

堆排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

3.2 直接选择排序

在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin<end){int Min = begin;int Max = begin;for (int i = begin; i <= end; i++){if (a[i] < a[Min]){Min = i;}else if (a[i] > a[Max]){Max = i;}}Swap(&a[begin], &a[Min]);//begin和max重叠的时候,在上一步,begin和min交换了,此时min下标处才是maxif (begin == Max){Max = Min;}Swap(&a[Max], &a[end]);begin++;end--;}
}void TestSelectSort()
{int a[] = { 3,6,9,2,5,8,1,4,7 };SelectSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}

直接选择排序的特性总结:

  1. 直接选择排序思考非常好理解,但是效率不是很好。
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

4 交换排序

基本思想:根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

4.1 冒泡排序

这个就是两两比较,不再细说。

void BubbleSort(int* a, int n)
{for (int i = 0; i < n; i++){int flag = 0;for (int j = 1; j < n - i; j++){if (a[j - 1] > a[j]){Swap(&a[j - 1], &a[j]);flag = 1;}}//不需要交换if (flag == 0){break;}}
}

冒泡排序的特性总结:

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

4.2 快速排序

  • 这个我迷糊了,先把课件笔记写上

基本思想:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
在这里插入图片描述

三数取中。对于基准值的选取,我们使用三数取中的思想,设计一个接口。
这样可以优化排序效率,解决在有序情况下,快排效率低的问题。

// 三数取中
int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right]){return mid;}else if (a[left] > a[right]){return left;}else{return right;}}else // a[left] > a[mid]{if (a[mid] > a[right]){return mid;}else if (a[left] < a[right]){return left;}else{return right;}}
}

4.2.1 挖坑法1

挖坑法1
在无序区R1到R2中取一个作为基准,以此划分左右两个较小的无序子区:R1到Ri-1和Ri+1到Rn,且左边无序子区中关键字都小于等于基准,右侧的无序子区中记录的关键字均大于等于基准,而基准位于最终排序的位置上。这就是一个划分。然后各部分一直划分,知道整个序列按关键字有序排列。

// 挖坑法1
int PartSort1(int* a, int left, int right)
{int index = GetMidIndex(a, left, right);Swap(&a[left], &a[index]);int begin = left, end = right;int pivot = begin;int key = a[begin];// O(N)while (begin < end){// 右边找小,放到左边while (begin < end && a[end] >= key)--end;// 小的放到左边的坑里,自己形成新的坑位a[pivot] = a[end];pivot = end;// 左边找大while (begin < end && a[begin] <= key)++begin;// 大的放到左边的坑里,自己形成新的坑位a[pivot] = a[begin];pivot = begin;}pivot = begin;a[pivot] = key;return pivot;
}

4.2.2 挖坑法2

挖坑法2 左右指针
选择begin找大,end找小,没有相遇就继续,相遇后交换。

// 挖坑法2
int PartSort2(int* a, int left, int right)
{int index = GetMidIndex(a, left, right);Swap(&a[left], &a[index]);int begin = left, end = right;int keyi = begin;while (begin < end){// 找小//begin < end在避免是升序的情况下,出现越界的情况while (begin < end && a[end] >= a[keyi]){--end;}// 找大while (begin < end && a[begin] <= a[keyi]){++begin;}Swap(&a[begin], &a[end]);}//相遇之后交换Swap(&a[begin], &a[keyi]);return begin;
}

4.2.3 挖坑法3

挖坑法3
prev找小,只要招到比下标keyi位置小的停下来,++prev,交换prev和cur位置,小的往前走,大的往后走。
注意避免自己跟自己交换的情况!

int PartSort3(int* a, int left, int right)
{int index = GetMidIndex(a, left, right);Swap(&a[left], &a[index]);int keyi = left;int prev = left, cur = left + 1;//结束条件while (cur <= right){//避免自己跟自己交换的情况if (a[cur] < a[keyi] && ++prev != cur){//++prev++;Swap(&a[prev], &a[cur]);}++cur;}Swap(&a[keyi], &a[prev]);return prev;
}

快速排序

void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyIndex = PartSort3(a, left, right);// 小区间优化if (keyIndex - 1 - left > 10){QuickSort(a, left, keyIndex - 1);}else{InsertSort(a + left, keyIndex - 1 - left + 1);}if (right - (keyIndex + 1) > 10){QuickSort(a, keyIndex + 1, right);}else{InsertSort(a + keyIndex + 1, right - (keyIndex + 1) + 1);}
}
//未经优化版
//void QuickSort(int* a, int left, int right)
//{
//	if (left >= right)
//		return;
//
//	int begin = left, end = right;
//	int pivot = begin;
//	int key = a[begin];
//	// [left, right]
//	// [left, pivot-1] pivot [pivot+1, right]
//	// 左子区间和右子区间有序,我们就有序了,如果让他们有序呢? 分治递归
//	QuickSort(a, left, pivot - 1);
//	QuickSort(a, pivot + 1, right);
//}

测试函数

void TestQuickSort()
{//int a[] = { 6, 3, 5, 2, 7, 8, 9, 4, 1 };int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 13, 27, 49 };QuickSort(a, 0, sizeof(a) / sizeof(int)-1);PrintArray(a, sizeof(a) / sizeof(int));
}

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  2. 时间复杂度:O(N*logN)

5 并归排序

基本思想:归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
在这里插入图片描述

void _MergeSort(int* a, int left, int right, int* tmp)
{if (left >= right)return;int mid = (left + right) >> 1;// 假设 [left, mid] [mid+1, right]//有序就归并_MergeSort(a, left, mid, tmp);_MergeSort(a, mid + 1, right, tmp);// 归并int begin1 = left, end1 = mid;int begin2 = mid + 1, end2 = right;int index = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}// 拷贝回去for (int i = left; i <= right; ++i){a[i] = tmp[i];}
}void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);_MergeSort(a, 0, n - 1, tmp);free(tmp);
}void TestMergeSort()
{int a[] = { 10, 6, 7 ,1, 3, 9, 4, 2 };MergeSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

6 十万级别数据测试

void TestOP()
{srand(time(0));const int N = 100000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand();//a1[i] = i;a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin7 = clock();BubbleSort(a7, N);int end7 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("QuickSort:%d\n", end5 - begin5);printf("MergeSort:%d\n", end6 - begin6);printf("BubbleSort:%d\n", end7 - begin7);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);}

在main()函数下测试结构如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能优化算法应用:基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.堆优化算法4.实验参数设定5.算法结果6.参考文…

简单了解一下当前火热的大数据 -- Kylin

神兽麒麟 一、Apache Kylin 是什么&#xff1f;二、Kylin架构结语 一、Apache Kylin 是什么&#xff1f; 由eBay公司中国团队研发&#xff0c;是一个免费开源的OLAP多维数据分析引擎优点 超快的响应速度&#xff0c;亚秒级支持超大数据集&#xff08;PB以上&#xff0c;千亿记…

链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)

上篇文章简述讲解了链表的基本概念并且实现了无头单向不循环链表&#xff1a;链接未来&#xff1a;深入理解链表数据结构&#xff08;一.c语言实现无头单向非循环链表&#xff09;-CSDN博客 那今天接着给大家带来带头双向循环链表的实现&#xff1a; 文章目录 一.项目文件规划…

three.js实战模拟VR全景视图

文章中使用到的案例图片都来源于&#xff1a;Humus - Textures 里面有很多免费的资源&#xff0c;可以直接下载&#xff0c;每个资源里面都提供6个不同方位的图片&#xff0c;我们通过threejs稍微处理一下&#xff0c;就能实现以下3D效果的场景了。 <template><div …

4.3【共享源】克隆实战开发之截屏(一)

一,Screen截屏介绍 Screen的截屏是指从源读取像素,然后复制到缓冲区。然后可以根据需要操纵缓冲区;它可以简单地写入文件,也可以在其他窗口或显示器中使用。 Screen API从源中读取像素,并将其复制到提供的缓冲区中以捕获截屏。缓冲区可以是pixmap或窗口缓冲区,但必须设…

LVM系统逻辑卷

1.lvm的来源 我们在工作中经常遇到服务器存储数据的分区磁盘空间不够的情况&#xff0c;尤其是当我们的业务是视频的时候&#xff0c;大批量用户上传和下载视频&#xff0c;磁盘空间需要不停的调整。如果我们作为运维每天的工作就是加硬盘是不是有点扯&#xff0c;而且换硬盘的…

Debian在升级过程中报错

当我们在升级的过程中出现如下报错信息 报错信息如下所示&#xff1a; The following signatures couldnt be verified because the public key is not available: NO_PUBKEY ED444FF07D8D0BF6 W: GPG error: http://mirrors.jevincanders.net/kali kali-rolling InRelease: …

操作系统 day15(信号量)

信号量机制 之前学习了这些解决进程互斥的方案 *但它们都无法实现“让权等待”&#xff0c;于是Dijkstra提出了一种卓有成效的实现进程互斥、同步的方法----信号量机制 总结&#xff1a;一个信号量对应一种资源。信号量的值这种资源的剩余数量&#xff08;信号量的值如果小于…

Vue3选项式API和组合式API详解

前言 相信学习Vue3的人中大多数都是之前使用Vue2开发的&#xff0c;当拿到一个Vue3项目时就接触到了组合式api&#xff0c;但对于组合式api不了解的人第一眼看上去会觉得一头雾水。&#xff1a;“什么玩意&#xff0c;乱七八糟的&#xff0c;选项式api多好&#xff0c;方法变量…

NiNNet

目录 一、网络介绍 1、全连接层存在的问题 2、NiN的解决方案(NiN块) 3、NiN架构 4、总结 二、代码实现 1、定义NiN卷积块 2、NiN模型 3、训练模型 一、网络介绍 NiN&#xff08;Network in Network&#xff09;是一种用于图像识别任务的卷积神经网络模型。它由谷歌研究…

AI绘画中CLIP文本-图像预训练模型

介绍 OpenAI 在 2021 年提出了 CLIP&#xff08;Contrastive Language–Image Pretraining&#xff09;算法&#xff0c;这是一个先进的机器学习模型&#xff0c;旨在理解和解释图像和文本之间的关系。CLIP 的核心思想是通过大规模的图像和文本对进行训练&#xff0c;学习图像…

2023.12.19 关于 Redis 通用全局命令

目录 引言 Redis 全局命令 SET & GET KEYS EXISTS DEL EXPIRE TTL TYPE redis 引入定时器高效处理过期 key 基于优先级队列方式 基于时间轮方式 引言 Redis 是根据键值对的方式存储数据的必须要进入 redis-cli 客户端程序 才能输入 redis 命令 Redis 全局命令 R…

C# SQLite基础工具类

目录 1、安装System.Data.SQLite工具包 2、创建数据库 3、数据库的连接与断开 4、执行一条SQL语句 5、批量执行sql语句 6、返回首行首列值 7、执行sql语句返回datatable 1、安装System.Data.SQLite工具包 2、创建数据库 /// <summary> /// 数据库路径 …

C++的泛型编程—模板

目录 一.什么是泛型编程&#xff1f; ​编辑 ​编辑 二.函数模板 函数模板的实例化 当不同类型形参传参时的处理 使用多个模板参数 三.模板参数的匹配原则 四.类模板 1.定义对象时要显式实例化 2.类模板不支持声明与定义分离 3.非类型模板参数 4.模板的特化 函数模板…

事件和事件源

事件监听 在JS当中写事件监听是这个函数&#xff0c;写了这个函数&#xff0c;前面是DOM对象&#xff0c;当由DOM树和CSSOM树形成的渲染树也有这个监听&#xff0c;这个函数可以添加到DOM树&#xff0c;最后渲染树也有。渲染树会渲染标签当标签发生该事件就会执行这个函数。这个…

conda环境下执行conda命令提示无法识别解决方案

1 问题描述 win10环境命令行执行conda命令&#xff0c;报命令无法识别&#xff0c;错误信息如下&#xff1a; PS D:\code\cv> conda activate pt conda : 无法将“conda”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径&a…

Transformer引领AI领域:从模型到平台,全方位探索与实践

编辑推荐 在不到4 年的时间里&#xff0c;Transformer 模型以其强大的性能和创新的思想&#xff0c;迅速在NLP 社区崭露头角&#xff0c;打破了过去30 年的记录。BERT、T5 和GPT 等模型现在已成为计算机视觉、语音识别、翻译、蛋白质测序、编码等各个领域中新应用的基础构件。…

pnpm :无法加载文件 D:\nodejs\node_global\pnpm.ps1,因为在此系统上禁止运行脚本

目录 一、问题描述 二、原因分析 三、解决问题 一、问题描述 pnpm : 无法加载文件 D:\learningsoftware\nodejs\node_global\pnpm.ps1&#xff0c;因为在此系统上禁止运行脚本。有关详细信息&#xff0c;请参阅 https:/go.microsoft.com/fwlink/?LinkID1351 70 中的 a…

5G+云渲染技术:将如何快速推进XR和元宇宙?

XR&#xff08;扩展现实&#xff09;领域正在以惊人的速度增长。目前&#xff0c;到 2024 年&#xff0c;一些专家表示这个行业的价值将达到 3000 亿美元。 这个行业发展如此迅速的部分原因是 XR 将在商业环境中的带来巨大利益。近年来&#xff0c;很多企业遇到了将增强现实和…

spring MVC概述和土门案例(无配置文件开发)

SpringMVC 1&#xff0c;SpringMVC概述2&#xff0c;SpringMVC入门案例2.1 需求分析2.2 案例制作步骤1:创建Maven项目步骤2:补全目录结构步骤3:导入jar包步骤4:创建配置类步骤5:创建Controller类步骤6:使用配置类替换web.xml步骤7:配置Tomcat环境步骤8:启动运行项目步骤9:浏览器…