数据可视化---离群值展示

内容导航

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_line(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]# #不同着色,正常绿色,离群值红色# sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.plot(data.index,data.values,'bo--',alpha=0.4)plt.scatter(error.index,error.values,c='r',s=60)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))# 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.legend(loc='best')plt.show()fig.savefig('Outlier_visualization_line.png',dpi=600)data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)

在这里插入图片描述

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_scatter(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]#不同着色,正常绿色,离群值红色sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.scatter(data.index,data.values,marker='o',c=sp)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max(),r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.show()fig.savefig('Outlier_visualization_scatter.png',dpi=600)data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

在这里插入图片描述

友情提示如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言哦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222601.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HuatuoGPT模型介绍

文章目录 HuatuoGPT 模型介绍LLM4Med&#xff08;医疗大模型&#xff09;的作用ChatGPT 存在的问题HuatuoGPT的特点ChatGPT 与真实医生的区别解决方案用于SFT阶段的混合数据基于AI反馈的RL 评估单轮问答多轮问答人工评估 HuatuoGPT 模型介绍 HuatuoGPT&#xff08;华佗GPT&…

基于博弈树的开源五子棋AI教程[1 位棋盘]

文章目录 0 引子1 定义2 实现 0 引子 常见的五子棋棋盘大小为15x15&#xff0c;最直观的表示就是一个二维数据。本文为了易于拓展一开始使用的是QVector<QVector>的数据&#xff0c;但是在分支因子为10的情况下只能搜索到4层左右&#xff0c;后面深度加深&#xff0c;搜…

Vue中为什么data属性是一个函数而不是一个对象?(看完就会了)

文章目录 一、实例和组件定义data的区别二、组件data定义函数与对象的区别三、原理分析四、结论 一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象&#xff0c;也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:&quo…

Spring(2)Spring从零到入门 - Spring注解开发(以IoC/DI为核心)

Spring&#xff08;2&#xff09;Spring从零到入门 - Spring注解开发&#xff08;以IoC/DI为核心&#xff09; 文章目录 Spring&#xff08;2&#xff09;Spring从零到入门 - Spring注解开发&#xff08;以IoC/DI为核心&#xff09;3 Spring之IOC/DI注解开发3.1 注解开发定义be…

TrustZone之安全启动与引导失败处理

一、引导和信任链 引导是任何TrustZone系统的关键部分。只有在引导流程中之前运行的所有软件组件都是可信的情况下,才能信任某个软件组件。这通常被称为信任链。下图显示了一个简化的信任链: 在我们的示例中,首先运行的代码是boot ROM。我们必须隐式信任boot ROM,因…

iPhone手机开启地震预警功能

iPhone手机开启地震预警功能 地震预警告警开启方式 地震预警 版权&#xff1a;成都高新减灾研究所 告警开启方式

2-高可用-负载均衡、反向代理

负载均衡、反向代理 upstream server即上游服务器&#xff0c;指Nginx负载均衡到的处理业务的服务器&#xff0c;也可以称之为real server,即真实处理业务的服务器。 对于负载均衡我们要关心的几个方面如下&#xff1a; 上游服务器配置&#xff1a;使用upstream server配置上…

python可以做小程序研发嘛,python能做微信小程序吗

大家好&#xff0c;给大家分享一下python可以做微信小程序开发吗&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 大家好&#xff0c;给大家分享一下用python编写一个小程序&#xff0c;很多人还不知道这一点。下面详细解释一下用python代码…

软件测试十大必问面试题(附答案和解析)

01 介绍之前负责的项目 参考答案&#xff1a;先大概描述一下这个项目是做什么的&#xff08;主要功能&#xff09;&#xff0c;包括哪些模块&#xff0c;是什么架构的&#xff08;B/S、C/S、移动端&#xff1f;&#xff09;&#xff0c;你在其中负责哪些模块的测试。期间经历了…

【Vue】el-date-picker日期范围组件(本周、本月、上周)

系列文章 【Vue】vue增加导航标签 本文链接&#xff1a;https://blog.csdn.net/youcheng_ge/article/details/134965353 【Vue】Element开发笔记 本文链接&#xff1a;https://blog.csdn.net/youcheng_ge/article/details/133947977 【Vue】vue&#xff0c;在Windows IIS平台…

智能优化算法应用:基于非洲秃鹫算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于非洲秃鹫算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于非洲秃鹫算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.非洲秃鹫算法4.实验参数设定5.算法结果6.…

光条中心线提取-Steger算法 [OpenCV]

在线结构光视觉传感器中&#xff0c;由线激光器发射出的线结构光&#xff0c;在本质上为一个连续且具有一定厚度的空间光平面&#xff0c;而在目标表面上所形成的具有一定宽度的光条特征&#xff0c;即为该光平面与目标表面相交而成的交线。在该空间光平面的厚度方向上&#xf…

IDEA创建springboot工程

选择spring boot的版本和依赖 finish创建完成 删除无用的文件

Axure中继器的使用实现表格的增删改查的自定义文件

目录 一.认识中继器 1.1.什么中继器 1.2. 中继器的组成 1.3.中继器的使用场景 二.中继器进行增删改查 三.十例表格增删改查 还有Axure这个东西许多东西需要我们去发现&#xff0c;我们需要去细心的研究&#xff0c;我们一起加油吧&#xff01;&#xff01;&#xff01;今…

福建农林大学 html +css + JavaScript 期末复习 -- 保姆级

html css JavaScript 期末复习&#xff08;保姆级复盘&#xff09; 考试题型 1、选择题 20题 30分 2、判断题 15题 15分 3、程序题 3 题 30分 4、综合题 2 题 25分 1、网页第一代文本标签&#xff08;直接上代码&#xff0c;看保姆级注解&#xff09; <!-- doctype: docum…

设计模式:循序渐进走入工厂模式

文章目录 前言一、引入二、简单工厂模式1.实现2.优缺点3.扩展 三、工厂方法模式1.实现2.优缺点 四、抽象工厂模式1.实现2.优缺点3.使用场景 五、模式扩展六、JDK源码解析总结 前言 软件设计模式之工厂模式。 一、引入 需求&#xff1a;设计一个咖啡店点餐系统。 设计一个咖啡类…

Nature 新研究发布,GPT 驱动的机器人化学家能够自行设计和进行实验,这对科研意味着什么?

文章目录 前言揭秘Coscientist不到四分钟&#xff0c;设计并改进了程序能力越大&#xff0c;责任越大 前言 有消息称&#xff0c;AI 大模型 “化学家” 登 Nature 能够自制阿司匹林、对乙酰氨基酚、布洛芬&#xff0c;甚至连复杂的钯催化交叉偶联反应&#xff0c;也能完成。 …

车牌识别技术的应用与前景展望

引言&#xff1a; 车牌识别技术作为计算机视觉和模式识别领域的重要应用之一&#xff0c;近年来得到了广泛的关注和应用。它通过采集、分析车辆的车牌信息&#xff0c;实现了自动识别、跟踪和验证等功能&#xff0c;为交通管理、安全监控等领域带来了诸多便利。本文将从几个重要…

nodejs+vue+ElementUi家政服务系统c90g5

项目中登录模块用到token家政服务平台有管理员&#xff0c;雇主&#xff0c;雇员三个角色。管理员功能有个人中心&#xff0c;雇主管理&#xff0c;雇员管理&#xff0c;资料认证管理&#xff0c;项目类型管理&#xff0c;服务项目管理&#xff0c;需求信息管理&#xff0c;服务…

全球盲盒热潮:探寻海外市场的文化风潮与商机

近年来&#xff0c;盲盒经济在全球范围内持续升温&#xff0c;其独特的营销方式以及带给消费者的刺激感&#xff0c;引发了广大消费者的热烈追捧。特别是在海外市场&#xff0c;其增长速度之快&#xff0c;让各类盲盒品牌看到了巨大的商业潜力。然而&#xff0c;盲盒市场的快速…