【Earth Engine】协同Sentinel-1/2使用随机森林回归实现高分辨率相对财富(贫困)制图

目录

  • 1 简介与摘要
  • 2 思路
  • 3 效果预览
  • 4 代码思路
  • 5 完整代码
  • 6 后记

1 简介与摘要

最近在做一些课题,需要使用Sentinel-1/2进行机器学习制图。
然后想着总结一下相关数据和方法,就花半小时写了个代码。
然后再花半小时写下这篇博客记录一下。
因为基于多次拍脑袋而且花的时间很少,所以千万不要把这篇博客的实验流程当作完整的实验,
具体的科研实验还需要反复设计和多次试错!!!

这篇博客主要参考数据(相对贫困指数,RWI)来自这个GEE社区网站,有缺数据的可以直接在这上面找,要用的时候调用一下就行了。这是这个数据的一个交互地图预览。
工作完全是在GEE平台上写的,如上面所说,这个工作跟我的课题内容关系不大,纯粹是拍脑袋的需求然后拍脑袋写的代码。

2 思路

思路就是用Sentinel-1/2的一些波段作为自变量,对自变量在2400m进行采样(因为这个RWI数据的分辨率就是2400),
然后相对贫困指数RWI作为因变量,
最后在10m尺度使用随机森林回归进行相对贫困制图。

因为我没相关需求,求快,所以这里就简单随便弄弄。
因为是随便弄弄,我也不计算什么乱七八糟的指数了,就用VV和VH还有一些光学波段作为自变量。
因变量就直接用原数据的RWI。

研究区选的是坦桑尼亚的原首都达雷斯萨拉姆及其周边,选这个地方没啥特殊的原因,纯粹是点开那个交互地图映入眼帘的就是这个地方(好耳熟的名字,依稀记得当时所里好像有好多非洲老哥来自这个地方)。

所以总的来说,就是基于Sentinel-1/2做一个高分辨率的(10m)相对贫困地图。

这个博客主要还是展示如何用开源数据在GEE上快速实现机器学习制图,这个博客提供的思路太简单了,如果正经是搞科研论文或者做实验还涉及很多数据预处理步骤。
首先这个RWI数据就要咔咔一顿处理,在这个思路里直接在2400m采样肯定是行不通的。
所以这个博客主要还是提供一个参考,具体的一些流程还需要精心设计和反复试错。

3 效果预览

惯例,在代码前面先放效果预览。

我的兴趣区(roi):
在这里插入图片描述

控制台:
在这里插入图片描述
上图的意思是区域内有2578个样本点,我拿80%(2078个)的去训练,20%(500个)去验证。
散点图是观测值和预测值的散点图。
RMSE就是均方根误差了。看着效果还可以哈。

绘制结果:
在这里插入图片描述

红色的是RWI高值(有钱),蓝色绿色的是RWI低值(贫困)。

绘制结果的细节:
在这里插入图片描述
在这里插入图片描述

为什么看起来这么稀碎呢,因为我拿World Settlement Footprint, WSF掩膜了一下,常规操作,具体可看代码。

4 代码思路

首先我把我要用的数据拉进来。其中RWI数据我按我的ROI筛选一下,不然太多了。代码如下:

// Importing Built-up map
var wsf2019 = ee.ImageCollection('projects/sat-io/open-datasets/WSF/WSF_2019');var wsf_01 = wsf2019.mosaic().eq(255);
var buildingup = wsf_01;// Importing RWI
var rwi = ee.FeatureCollection("projects/sat-io/open-datasets/facebook/relative_wealth_index").filterBounds(roi.geometry());print("sample size", rwi.size())

考虑到要调用Sentinel-1和2,所以也把这些数据写进来,然后也要写上一些预处理。代码如下:

// Importing S1 SAR images.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate("2019-01-01", "2024-01-01").filterBounds(roi.geometry());
// print(sentinel1)
// Filter the S1 collection by metadata properties.
var vvVhIw = sentinel1// Filter to get images with VV and VH dual polarization..filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')).filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))// Filter to get images collected in interferometric wide swath mode..filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));// Importing S2 images.
// Cloud mask function.
function maskS2clouds(image) {var qa = image.select('QA60');// Bits 10 and 11 are clouds and cirrus, respectively.var cloudBitMask = 1 << 10;var cirrusBitMask = 1 << 11;// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(qa.bitwiseAnd(cirrusBitMask).eq(0));return image.updateMask(mask).divide(10000);
}var sentinel2 = ee.ImageCollection("COPERNICUS/S2_SR").filterDate("2019-01-01", "2024-01-01").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30)).filterBounds(roi.geometry()).map(maskS2clouds).mean();

再然后,把我要的波段挑出来,合并成一个image。简简单单搞一下子。代码如下:

// Indice.
var vv = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
var vh = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();var blue = sentinel2.select('B2');
var green = sentinel2.select('B3');
var red = sentinel2.select('B4');
var red_edge1 = sentinel2.select('B5');
var red_edge2 = sentinel2.select('B6');
var red_edge3 = sentinel2.select('B7');
var nir = sentinel2.select('B8');
var red_edge4 = sentinel2.select('B8A');
var SWIR1 = sentinel2.select('B11');
var SWIR2 = sentinel2.select('B12');var image = ee.Image().addBands(vv).addBands(vh).addBands(blue).addBands(green).addBands(red).addBands(red_edge1).addBands(red_edge2).addBands(red_edge3).addBands(nir).addBands(red_edge4).addBands(SWIR1).addBands(SWIR2);var band_name = ee.List(['VV', 'VH', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12'])

然后,就是用RWI数据对我选的这些波段(自变量进行采样)。考虑到RWI是2400m分辨率,所以我就在2400米采样。采样完把我们样本规模打印到控制台看看。代码如下:

// Sampling.
var samples = rwi.randomColumn('random'); // set a random fieldvar training_samples = samples.filter(ee.Filter.lt('random', 0.8)); // 80% training data
var training_samples = image.reduceRegions({collection: training_samples, reducer: ee.Reducer.mean(), scale: 2400}); // samplingvar testing_samples = samples.filter(ee.Filter.gte('random', 0.8)); // 20% testing data
var testing_samples = image.reduceRegions({collection: testing_samples, reducer: ee.Reducer.mean(), scale: 2400}); // samplingprint("training sample size", training_samples.size())
print("testing sample size", testing_samples.size())

接下来就是要正式的训练模型绘图。用刚才采样的训练集训练一个回归模型,并且用这个模型进行绘图,得到一张结果的图像rwi_map,然后再用WSF掩膜一下住区。代码如下:

// Regressing.
var regressor = ee.Classifier.smileRandomForest(50) // number of estimators/trees.setOutputMode('REGRESSION') // regression algorithm.train(training_samples, // training samples"rwi", // regressing targetband_name); // regressor featuresvar rwi_map = image.unmask(0).clip(roi).classify(regressor).rename('rwi'); // regress
var rwi_map = rwi_map.updateMask(buildingup).clip(roi); // mask

建模画图完了,然后就是验证。用sampleRegions在画完的图上采样得到预测值,和一开始的观测值进行对比。验证包含散点图R2和RSME,都是必要常用的指标和表现形式。代码如下:

// Testing.
var testing_samples = rwi_map.rename('predicted').sampleRegions({collection: testing_samples,scale: 2400,geometries: true,projection: 'EPSG:4326'
});
var testing_samples = testing_samples.select(['rwi', 'predicted']);
// print(testing_samples)
// Scatter plot.
var chartTraining = ui.Chart.feature.byFeature({features: testing_samples, xProperty:'rwi', yProperties:['predicted']}).setChartType('ScatterChart').setOptions({title: 'Predicted vs Observed - Training data ',hAxis: {'title': 'observed'},vAxis: {'title': 'predicted'},pointSize: 3,trendlines: {0: {showR2: true,visibleInLegend: true},1: {showR2: true,visibleInLegend: true}}});
print(chartTraining);
// Calculating RMSE.
var observation = ee.Array(testing_samples.aggregate_array('rwi'));
var prediction = ee.Array(testing_samples.aggregate_array('predicted'));
var residuals = observation.subtract(prediction);
var rmse = residuals.pow(2).reduce('mean', [0]).sqrt();
print('RMSE', rmse);

最后是把刚才画的图,也就是绘图结果可视化。代码如下:

// Visualization.
Map.centerObject(roi, 8);
var palettes = ["#08525e", "#40d60e", "#b9e40e", "#f9c404", "e70000"]
Map.addLayer(rwi_map,{min: -0.5, max: 1.5, palette: palettes},'RWI');

5 完整代码

我的代码链接在这,可以直接使用。
完整代码如下(和链接中相同):

// Importing Built-up map
var wsf2019 = ee.ImageCollection('projects/sat-io/open-datasets/WSF/WSF_2019');var wsf_01 = wsf2019.mosaic().eq(255);
var buildingup = wsf_01;// Importing RWI
var rwi = ee.FeatureCollection("projects/sat-io/open-datasets/facebook/relative_wealth_index").filterBounds(roi.geometry());print("sample size", rwi.size())// Importing S1 SAR images.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate("2019-01-01", "2024-01-01").filterBounds(roi.geometry());
// print(sentinel1)
// Filter the S1 collection by metadata properties.
var vvVhIw = sentinel1// Filter to get images with VV and VH dual polarization..filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')).filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))// Filter to get images collected in interferometric wide swath mode..filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));// Importing S2 images.
// Cloud mask function.
function maskS2clouds(image) {var qa = image.select('QA60');// Bits 10 and 11 are clouds and cirrus, respectively.var cloudBitMask = 1 << 10;var cirrusBitMask = 1 << 11;// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(qa.bitwiseAnd(cirrusBitMask).eq(0));return image.updateMask(mask).divide(10000);
}var sentinel2 = ee.ImageCollection("COPERNICUS/S2_SR").filterDate("2019-01-01", "2024-01-01").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30)).filterBounds(roi.geometry()).map(maskS2clouds).mean();// Indice.
var vv = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
var vh = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();var blue = sentinel2.select('B2');
var green = sentinel2.select('B3');
var red = sentinel2.select('B4');
var red_edge1 = sentinel2.select('B5');
var red_edge2 = sentinel2.select('B6');
var red_edge3 = sentinel2.select('B7');
var nir = sentinel2.select('B8');
var red_edge4 = sentinel2.select('B8A');
var SWIR1 = sentinel2.select('B11');
var SWIR2 = sentinel2.select('B12');var image = ee.Image().addBands(vv).addBands(vh).addBands(blue).addBands(green).addBands(red).addBands(red_edge1).addBands(red_edge2).addBands(red_edge3).addBands(nir).addBands(red_edge4).addBands(SWIR1).addBands(SWIR2);var band_name = ee.List(['VV', 'VH', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12'])// Sampling.
var samples = rwi.randomColumn('random'); // set a random fieldvar training_samples = samples.filter(ee.Filter.lt('random', 0.8)); // 80% training data
var training_samples = image.reduceRegions({collection: training_samples, reducer: ee.Reducer.mean(), scale: 2400}); // samplingvar testing_samples = samples.filter(ee.Filter.gte('random', 0.8)); // 20% testing data
var testing_samples = image.reduceRegions({collection: testing_samples, reducer: ee.Reducer.mean(), scale: 2400}); // samplingprint("training sample size", training_samples.size())
print("testing sample size", testing_samples.size())// Regressing.
var regressor = ee.Classifier.smileRandomForest(50) // number of estimators/trees.setOutputMode('REGRESSION') // regression algorithm.train(training_samples, // training samples"rwi", // regressing targetband_name); // regressor featuresvar rwi_map = image.unmask(0).clip(roi).classify(regressor).rename('rwi'); // regress
var rwi_map = rwi_map.updateMask(buildingup).clip(roi); // mask// Testing.
var testing_samples = rwi_map.rename('predicted').sampleRegions({collection: testing_samples,scale: 2400,geometries: true,projection: 'EPSG:4326'
});
var testing_samples = testing_samples.select(['rwi', 'predicted']);
// print(testing_samples)
// Scatter plot.
var chartTraining = ui.Chart.feature.byFeature({features: testing_samples, xProperty:'rwi', yProperties:['predicted']}).setChartType('ScatterChart').setOptions({title: 'Predicted vs Observed - Training data ',hAxis: {'title': 'observed'},vAxis: {'title': 'predicted'},pointSize: 3,trendlines: {0: {showR2: true,visibleInLegend: true},1: {showR2: true,visibleInLegend: true}}});
print(chartTraining);
// Calculating RMSE.
var observation = ee.Array(testing_samples.aggregate_array('rwi'));
var prediction = ee.Array(testing_samples.aggregate_array('predicted'));
var residuals = observation.subtract(prediction);
var rmse = residuals.pow(2).reduce('mean', [0]).sqrt();
print('RMSE', rmse);// Visualization.
Map.centerObject(roi, 8);
var palettes = ["#08525e", "#40d60e", "#b9e40e", "#f9c404", "e70000"]
Map.addLayer(rwi_map,{min: -0.5, max: 1.5, palette: palettes},'RWI');

6 后记

可能有些地方不太专业不太科学,希望诸位同行前辈不吝赐教或者有什么奇妙的想法可以和我共同探讨一下。可以在csdn私信我或者联系我邮箱(chinshuuichi@qq.com),不过还是希望大家邮箱联系我,csdn私信很糟糕而且我上csdn也很随缘。
如果对你有帮助,还望支持一下~点击此处施舍或扫下图的码。
-----------------------分割线(以下是乞讨内容)-----------------------
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223032.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python小游戏】某程序员自制《苹果大赛》,赶紧来抢~“免费的平安夜苹果,你说是不是最甜的鸭?”(附源码)

导语 很久不见&#xff0c;我是木木子鸭~2023发生了太多事情啦&#xff0c;我将重新启航&#xff0c;开启新的一页。 希望不管是文章还是各种小程序都能够帮到大家&#xff0c;大家也要继续支持我哦~我将继续努力更新&#xff01; ——祝你祝我 在这个冬天—— 爱与好运同在 …

车云TCP链路偶现链接失联问题排查

一、问题分析 1.1 车云tcp长连接分析排查 在15:37:32.039上线&#xff0c; 在 16:07:26.527下线&#xff0c;车云长连接通道稳定&#xff0c;且该期间心跳数据正常。 1.2 云向驾仓推送数据分析 在15:37:42 进行车辆接管后&#xff0c;该车辆下线&#xff0c;且无法在上线&am…

AtomHub 开源容器镜像中心开放公测,国内服务稳定下载

由开放原子开源基金会主导&#xff0c;华为、浪潮、DaoCloud、谐云、青云、飓风引擎以及 OpenSDV 开源联盟、openEuler 社区、OpenCloudOS 社区等成员单位共同发起建设的 AtomHub 可信镜像中心正式开放公测。AtomHub 秉承共建、共治、共享的理念&#xff0c;旨在为开源组织和开…

Java中使用JTS实现WKB数据写入、转换字符串、读取

场景 Java中使用JTS实现WKT字符串读取转换线、查找LineString的list中距离最近的线、LineString做缓冲区扩展并计算点在缓冲区内的方位角&#xff1a; Java中使用JTS实现WKT字符串读取转换线、查找LineString的list中距离最近的线、LineString做缓冲区扩展并计算点在缓冲区内…

户用光伏设计有哪些特点?

随着科技的发展和人们对可再生能源的追求&#xff0c;户用光伏设计已经逐渐成为一种新型的能源解决方案。它不仅有助于降低能源成本&#xff0c;而且对环境保护有着积极的影响。那么&#xff0c;户用光伏设计究竟有哪些特点呢&#xff1f; 首先&#xff0c;户用光伏设计的核心在…

c++动态内存与智能指针

前言 静态内存&#xff1a;用于保存局部静态变量、类内的静态数据成员以及全局变量栈&#xff1a;用于保存函数内部的非static变量堆&#xff1a;存储动态分配的对象&#xff08;程序运行时分配的对象&#xff09; 静态内存和栈内存的对象由编译器自动创建和销毁 而堆区的动态…

分布式搜索elasticsearch概念

什么是elasticsearch&#xff1f; elasticsearch是一款非常强大的开源搜索引擎&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 目录 elasticsearch的场景 elasticsearch的发展 Lucene篇 Elasticsearch篇 elasticsearch的安装 elasticsearch的场景 elasticsear…

显示器屏幕oled的性能、使用场景、维护

OLED显示器屏幕具有许多独特的性能和使用场景&#xff0c;以下是关于OLED显示器屏幕的性能、使用场景和维护的详细介绍&#xff1a; 一、性能 色彩鲜艳&#xff1a;OLED显示器屏幕能够呈现出更加鲜艳的色彩&#xff0c;色彩饱和度高&#xff0c;色彩还原性好&#xff0c;可以给…

lv12 根文件系统12

目录 1 根文件系统 2 BusyBox 3 实验九 3.1 在 busybox 官网下载 busybox 源码&#xff08;这里我们下载 busybox-1.22.1.tar.bz2&#xff09; 3.2 拷贝 busybox 源码包到 ubuntu 的家目录下&#xff0c;解压并进入其顶层目录 3.3 进入 busybox 配置界面&#xff08;…

【Midjourney】Midjourney根据prompt提示词生成黑白色图片

目录 &#x1f347;&#x1f347;Midjourney是什么&#xff1f; &#x1f349;&#x1f349;Midjourney怎么用&#xff1f; &#x1f514;&#x1f514;提示词格式 &#x1f34b;&#x1f34b;应用示例——“秘密花园”式涂色书配图生成 &#x1f34c;&#x1f34c;例子1…

SpringMVC系列之技术点定向爆破二

SpringMVC的运行流程 客户端发送请求 tomcat接收对应的请求 SpringMVC的核心调度器DispatcherServlet接收到所有请求 请求地址与RequestMapping注解进行匹配&#xff0c;定位到具体的类和具体的处理方法&#xff08;封装在Handler中&#xff09; 核心调度器找到Handler后交…

【Java 基础】33 JDBC

文章目录 1. 数据库连接1&#xff09;加载驱动2&#xff09;建立连接 2. 常见操作1&#xff09;创建表2&#xff09;插入数据3&#xff09;查询数据4&#xff09;使用 PreparedStatement5&#xff09;事务管理 3. 注意事项总结 Java Database Connectivity&#xff08;JDBC&…

rqt_graph使用说明

其中右边的&#xff1a;/rosout是一个topic 也就是一个话题 /rosout是一个topic 也是一个话题 可以看到凡是在rqt_graph里面用长方形标识的全都是话题 通过观察可以发现&#xff1a;凡是用椭圆标识的全都是节点 如果切换为Nodes only视图会发现&#xff1a; 所说的no…

Java 中的内部类的定义

目录 一、成员内部类 二、静态内部类 三、局部内部类 四、匿名内部类 一、成员内部类 public class InnerClass {String name;private Integer age;static String hobby;/*** 成员内部类* 1、成员内部类中只能定义非静态属性和方法* 2、成员内部类中可以访问外部类的成员&a…

十一.约束(一)

约束 1.约束(constraint)概念1.1为什么需要约束1.2什么是约束1.3约束的分类 2.非空约束2.1作用2.2关键字2.3特点2.4添加非空约束2.5删除非空约束 3.唯一性约束3.1作用3.2关键字3.3特点3.4添加唯一约束3.5关于复合唯一约束3.5删除唯一约束 4.PRIMARY KEY 约束4.1作用4.2关键字4.…

数据分析基础之《numpy(5)—合并与分割》

了解即可&#xff0c;用panads 一、作用 实现数据的切分和合并&#xff0c;将数据进行切分合并处理 二、合并 1、numpy.hstack 水平拼接 # hstack 水平拼接 a np.array((1,2,3)) b np.array((2,3,4)) np.hstack((a, b))a np.array([[1], [2], [3]]) b np.array([[2], […

循环渲染ForEach

目录 1、接口说明 2、键值生成规则 3、组件创建规则 3.1、首次渲染 3.2、非首次渲染 4、使用场景 4.1、数据源不变 4.2、数据源组项发生变化 4.3、数据源数组项子属性变化 5、反例 5.1、渲染结果非预期 5.2、渲染性能降低 Android开发中我们有ListView组件、GridVi…

Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580

Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 Apache ShenYu 网关JWT认证绕过漏洞 CVE-2021-37580 已亲自复现) 漏洞名称 漏洞描述 Apache ShenYu是一个异步的&#xff0c;高性能的&#x…

Qt中字符串转换为JS的函数执行

简介 在 QML 中&#xff0c;将 JavaScript 字符串转换为函数通常涉及使用 Function 构造函数或 eval() 函数。但是&#xff0c;QML 的环境对 JavaScript 的支持有一定的限制&#xff0c;因此不是所有的 JavaScript 功能都可以在 QML 中直接使用。 以下介绍都是在Qt5.12.1…

Mybatis3系列课程8-带参数查询

简介 上节课内容中讲解了查询全部, 不需要带条件查, 这节我们讲讲 带条件查询 目标 1. 带一个条件查询-基本数据类型 2.带两个条件查询-连个基本数据类型 3.带一个对象类型查询 为了实现目标, 我们要实现 按照主键 查询某个学生信息, 按照姓名和年级编号查询学生信息 按照学生…