Opencv中的滤波器

一副图像通过滤波器得到另一张图像,其中滤波器又称为卷积核,滤波的过程称之为卷积。

这就是一个卷积的过程,通过一个卷积核得到另一张图片,明显发现新的到的图片边缘部分更加清晰了(锐化)。 

上图就是一个卷积的过程,下面的是原始图像,上面的是卷积核。卷积核以一定步长对于原始图像进行卷积处理,得到新的图像。 

卷积核的大小:上图中的卷积核是5x5大小的卷积核。

锚点:就是卷积核最中心的位置

边界扩充:进行卷积后的图像一般比原始图像要小一点,为了和原始图像大小相同,就需要进行边界扩充。

步长:就是卷积核对原始图像进行扫描时,每一次移动几个像素。

卷积核的大小

(1)卷积核一般为奇数,如3x3,5x5,7x7;

一方面是为了增加padding的原因,就是进行扩充操作。

另一方面是保证锚点在中间(大家可以自己画一下3x3和4x4的矩阵进行思考有什么区别)防止位置发生偏移。

(2)卷积核大小的影响:卷积核越大,看到的信息(感受野)就越多,提取的特征就越好,同时计算量就越大。(目前很多深度学习领域中,使用两个或多个小的卷积核代替大的卷积核)

(3)边界扩充:当卷积核大于1且不进行边界扩充时,输出的尺寸一定会变小,所以需要进行边界扩充维持原来的大小。

上图中下面的是原图,上面的是进行卷积后的图片,卷积核大小就是如图中的3x3,虚线部分就是进行边界扩充后的,所以很直观感受到,在进行边界扩充后才会变成原始的图像大小。 

利用上述公式就可以得出不同的参数了,这对我们使用多大的卷积核,希望得到多大尺寸的图片都很有帮助。 

(4)步长大小:

上图中的步长就是2。

低通滤波与高通滤波

低通滤波与高通滤波相关知识

低通滤波就是低于某个阈值是可以通过的

高通滤波就是高于某个阈值是可以通过的

低通滤波可以去除噪音或平滑图像(美颜中磨皮,去痘)

高通滤波可以帮助插值图像的边缘(抠图时需要边缘)

图像卷积

filter2D(src,ddepth,kernel,anchor,delta,borderType)

src:操作的原始图像

ddepth:位深,通常设置为-1

kernel:卷积核 (重要)

anchor:锚点(核的中心点)默认为-1,根据核直接去得到锚点

delta:原始图进行卷积后得到的图加上delta,默认为0

borderType:边界类型,加黑边等等  一般取默认值

如图卷积核是上图,就意味着在原图中选5x5的像素每个值都乘1进行相加,得到的结果乘(1/25)就取得平均值,更加平滑。

图像卷积实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/preview.jpg')# 自己设计的kernel的方法
kernel = np.ones((5, 5), np.float32) / 25
dst = cv2.filter2D(img, -1, kernel)cv2.imshow('dst', dst)
cv2.imshow('img', img)cv2.waitKey(0)

 

左边是原图,右边是处理后的图片。

看代码:我们设置的是5x5的全为1的矩阵,最后除25.得到结果更加平滑,但是清晰度明显下降了。(因此我们自己创的kernel往往不太合适,需要一些现存的效果较好的滤波器)

方盒滤波和均值滤波

方盒滤波:boxFilter(src,ddepth,ksize,anchor,normalize,borderType)

均值滤波:blur(src,ksize,anchor,borderType)

src:处理的图像

ddepth:位深,通常设置为-1

ksize:kernel size  卷积核大小

anchor:锚点(核的中心点)默认为-1,根据核直接去得到锚点

normalize:当normalize为True时,a=1/(W*H)  此时会退化成均值滤波

                    当normalize为False时,a=1     下图就是方盒滤波的卷积核

borderType:边界类型,加黑边等等  一般取默认值 。

方盒滤波和均值滤波实战代码

均值滤波:

# 均值滤波
dst = cv2.blur(img, (5, 5))  # 这个是均值滤波 用blur   其结果和自己设计kernel的结果相同

结果和我们在第二部分自己设置kernel的结果相同,因为此时矩阵进行相乘后也是除25。

方盒滤波:

# 这种是方盒滤波,其初始中normalize为true变成均值滤波,如果想变成方盒滤波需要把normalize设置false
dst = cv2.boxFilter(img, -1, (5, 5), False)  
dst1 = cv2.boxFilter(img, -1, (5, 5), True)

 

左边的是通过方盒滤波得到的结果,右边是均值滤波得到的结果。

高斯滤波 

高斯滤波相关知识

上图就是高斯滤波,发现一条曲线越靠近中间值越大(权重越大)

左边这张图代表的是矩阵中每个位置的大小,最中心的大小不一定是最大的(虽然第一张图25相较于周围较大), 但是最中心点的权重一定是最大的,并且越靠近中心权重越大(如第二张图,每一个数值乘一个权重的数值)

高斯滤波API:GaussianBlur(img,kernel,sigmaX,sigmaY,……)

img:需要对哪个图像进行处理

kernel:卷积核(大小) kernelsize

sigmaX,sigmaY:到中心点的延展宽度

可以看出不同的sigma值的结果,如果没有sigma时,就看kernelsize,如下图。

 高斯滤波实战代码

# 高斯滤波(解决高斯滤波,测量值会在均值附近产生大量的值,而离均值较远的值则会较少出现。)
# 设计中的锚点附近的权值较大
dst = cv2.GaussianBlur(img1, (5, 5), sigmaX=1)

 

左边是原图,发现每个环里面有很多的噪声点,经过高斯滤波后发现很多的噪声点都被去掉了,但是边缘部分也被处理掉了。(大家也可以自己去尝试改变sigma的值,看看会出现什么样的结果)

高斯滤波主要就是解决高斯噪点。

中值滤波

中值滤波相关知识

假如现在有一个数组[1556789],中值滤波就是取其中的中间值作为卷积后的结果值。

所以,当使用卷积核去卷积时,每一次都会对卷积后的结果进行排序,最后选择中间值。

中值滤波主要针对胡椒噪声(整张图像都有噪声)有很好的效果。

中值滤波API:medianBlur(img,ksize)

img:就是对哪张图片进行操作

ksize:kernelsize 卷积核的大小

中值滤波实战代码

# 中值滤波(解决胡椒噪音)
dst = cv2.medianBlur(img2, 7)

 

左边是具有胡椒噪声的原图,右边是处理后的图片。 但是边缘也是被弱化了。

双边滤波

双边滤波相关知识

可以保留边缘,同时对边缘内的区域进行平滑处理。(大家思考,当时我们使用高斯滤波去除区域内的高斯噪声,但是边缘被弱化了。那是否我们可以使用双边滤波解决边缘弱化的问题?)

双边滤波应用于美颜。

对于输入图像来看,边沿就是色差特别大的区域,双边滤波并没有对其进行处理,而是将边沿两边进行平滑处理。 

双边滤波API:bilateralFilter(img,d,sigmaColor,sigmaSpace,……)

img:就是对哪张图片进行操作

d:直径(可以认为就是核的大小)

sigmaColor:对边沿的控制,在一定范围就不处理边沿

sigmaSpace:对边沿两边的控制,在一定范围内进行平滑处理

双边滤波实战代码

# 双边滤波(可以保留边缘,同时对边缘内的区域进行平滑处理)(主要作用是进行美颜)
dst = cv2.bilateralFilter(rita, 7, 20, 50)
# dst1=cv2.bilateralFilter(rita,20,20,50) #相比d=7,d=10磨皮效果更好

左边是原图,右边是进行双边滤波处理后的图片。大家也可以尝试去修改d等参数获得一个更好的美颜效果。

—————————————以下都是高通滤波——————————————————————

高通滤波

检测边缘

常见的高通滤波:

Sobel(索贝尔)(首先使用了高斯滤波去噪,后又一阶导,得到边沿)

Scharr(沙尔)当Sober的卷积核大小设置为-1就变成了Scharr

Sobel(索贝尔)和Scharr(沙尔)都只能对一个方向进行处理,所以得到结果后需要把x,y得到的结果加到一起

Laplacian(拉普拉斯)可以直接求出x,y方向的边缘。对于噪音比较敏感,因为内部没有降噪的处理。

大家可能这样看x,y方向的边缘不太理解,等后面实战会有所展示。

Sobel算子

Sobel算子相关知识点

先向x方向上求导,然后在y方向求导。最终结果相加。

Sobel算子API:Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

dx=1 就检测出y边缘  dy=1就检测出x边缘

ksize:kernelsize 卷积核大小  。卷积核大小设置为-1就变成了Scharr

scale:用于缩放

delta:对结果进行加delta

borderType:边缘类型

Sobel实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/chess.png')# 索贝尔算子
# y方向的边缘
y = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)  # 3x3的卷积核就变成了scharr# x方向的边缘
x = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)  # 默认ksize为3dst = x + y  # python自身带的
dst1 = cv2.add(x, y)cv2.imshow('img', img)
cv2.imshow('y', y)
cv2.imshow('x', x)
cv2.imshow('dst', dst)cv2.waitKey(0)

第一张图是原图,第二张代码中使dy=1,得到x方向上的边沿。第三张代码中使dx=1,得到y方向上的边沿。最后代码中的dst和dst1得到的效果都是一样的,将x,y方向上的边沿加在一起。

Sobel不可以将dx,dy都设置成1。大家可以自己设置一些看看会出现什么样的结果。

Scharr算子

Scharr算子相关知识点

与Sobel类似,但是使用的kernel值不同。Scharr只支持3x3的卷积核。

Scharr只能求x方向或y方向的边缘。

Scharr的API :Scharr(src,ddepth,dx,dy,scale=1,delta=0,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

dx=1 就检测出y边缘  dy=1就检测出x边缘

scale:用于缩放

delta:对结果进行加delta

borderType:边缘类型

Scharr算子实战代码

 

得到的图像和Sobel的图像相同。 但是Scharr还识别出来一些细小的点。(Soble用的较多)

拉普拉斯算子

拉普拉斯算子相关知识

可以同时求两个方向的边缘,不用和Sobel或Scharr一样单独求x,y。

拉普拉斯算子对于噪声比较敏感,所以一般需要进行去噪后再使用拉普拉斯。

拉普拉斯API:Laplacian(src,ddepth,ksize=1,scale=1,borderType=BORDER_DEFAULT)

src:对哪张图进行操作

ddepth:输出图像的位深

ksize=kernelsize卷积核大小

scale:用于缩放

borderType:边缘类型

拉普拉斯实战代码

ldst = cv2.Laplacian(img, cv2.CV_64F, ksize=5)

 

左图是原图,右图是进过拉普拉斯处理后的图片。由于原图中噪音比较少,所以直接使用了拉普拉斯。

边缘检测Canny(重要)

Canny的相关知识

对于Sobel,Scharr需要分别对x,y进行操作,拉普拉斯需要进行降噪处理。

而Canny相较于这三种就比较完美,效果好,并且简单。

canny使用的是5x5的高斯滤波消除噪声(比拉普拉斯好),计算图像梯度方向(0,45,90,135)(比Soble,Scharr全面),取局部最大值,阈值计算。

阈值计算原理,超过maxval的一定是边缘,小于minval的一定不是边缘。再maxval和minval之间的可能是可能不是,如果像c点一样于超过maxval确定是边缘的线是连续的,那c点就是边缘,否则像b一样就不是边缘。 

Canny的API:Canny(img,minval,maxval,……)

img:对哪张图片进行操作

minval,maxval:要进行手动设置阈值

Canny实战代码

import cv2
import numpy as npimg = cv2.imread('../MM/preview.jpg')dst = cv2.Canny(img, 180, 200)cv2.imshow('img', img)
cv2.imshow('dst', dst)cv2.waitKey(0)

 

大家可以根据自己的图片改变相关的maxval和minval来体会不同的感觉。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223718.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java8实战 lambda表达式、函数式接口、方法引用双冒号(中)

前言 书接上文,上一篇博客讲到了lambda表达式的应用场景,本篇接着将java8实战第三章的总结。建议读者先看第一篇博客 其他函数式接口例子 上一篇有讲到Java API也有其他的函数式接口,书里也举了2个例子,一个是java.util.functi…

Ubuntu系统如何安装和卸载CUDA和CUDNN

背景 最近在学习PaddlePaddle在各个显卡驱动版本的安装和使用,所以同时也学习如何在Ubuntu安装和卸载CUDA和CUDNN,在学习过程中,顺便记录学习过程。在供大家学习的同时,也在加强自己的记忆。本文章以卸载CUDA 8.0 和 CUDNN 7.05 …

Docker 编译OpenHarmony 4.0 release

一、背景介绍 1.1、环境配置 编译环境:Ubuntu 20.04OpenHarmony版本:4.0 release平台设备:RK3568 OpenHarmony 3.2更新至OpenHarmony 4.0后,公司服务器无法编译通过,总是在最后几十个文件时报错,错误码4000&#xf…

Linux一行命令配置jdk环境

使用方法: 压缩包上传 到/opt, 更换命令中对应的jdk包名即可。 注意点:jdk-8u151-linux-x64.tar.gz 解压后名字是jdk1.8.0_151 sudo tar -zxvf jdk-8u151-linux-x64.tar.gz -C /opt && echo export JAVA_HOME/opt/jdk1.8.0_151 | sudo tee -a …

Diffusion扩散模型学习:图片高斯加噪

高斯分布即正态分布;图片高斯加噪即把图片矩阵每个值和一个高斯分布的矩阵上的对应值相加 1、高斯分布 np.random.normal 一维: import numpy as np import matplotlib.pyplot as pltdef generate_gaussian_noise(mean, std_dev, size):noise np.ran…

【CentOS 7.9 分区】挂载硬盘为LVM操作实例

LVM与标准分区有何区别,如何选择 目录 1 小系统使用LVM的益处:2 大系统使用LVM的益处:3 优点:CentOS 7.9 挂载硬盘为LVM操作实例查看硬盘情况格式化硬盘创建PV创建VG创建LV创建文件系统并挂载自动挂载添加:注意用空格间…

VSCode SSH 连接提示: spawn UNKNOWN

随笔记录 目录 1. 背景介绍 2. 确认问题 : ssh -V 3. 解决问题 3.1 确认本地 ssh.exe 路径 3.2 修改vscode Remote.ssh:Path 3.2.1 设置 Reomte.ssh:Path - 方法一 3.2.2 设置 Reomte.ssh:Path - 方法二 1. 背景介绍 windows 系统vscode ssh remote CentOS7&#xff…

【零基础入门Docker】什么是Dockerfile Syntax

✍面向读者:所有人 ✍所属专栏:零基础入门Docker专栏https://blog.csdn.net/arthas777/category_12455882.html 目录 编写Dockerfile和Format的语法 2. MAINTAINER 3. RUN 4. ADD 6. ENTRYPOINT 7. CMD 8. EXPOSE 9. VOLUME 11. USER 12. ARG …

.NET core 自定义过滤器 Filter 实现webapi RestFul 统一接口数据返回格式

之前写过使用自定义返回类的方式来统一接口数据返回格式,.Net Core webapi RestFul 统一接口数据返回格式-CSDN博客 但是这存在一个问题,不是所有接口会按照定义的数据格式返回,除非每个接口都返回我们自定义的类,这种实现起来不…

Adobe InDesign各版本安装指南

下载链接 https://pan.baidu.com/s/1VWGKDUijTTETU9sVWFjCtg?pwd0531 #2024版本 1.鼠标右击【InCopy2024(64bit)】压缩包(win11及以上系统需先点击“显示更多选项”)【解压到 InCopy2024(64bit)】。 2.打开解压后的文件夹,鼠标右击【Setup…

DevOps系列文章 : 使用dpkg命令打deb包

创建一个打包的目录,类似rpmbuild,这里创建了目录deb_build mkdir deb_build目标 我有一个hello的二进制文件hello和源码hello.c, 准备安装到/opt/helloworld目录中 步骤 在deb_build目录创建一个文件夹用于存放我的安装文件 mkdir helloworld在he…

深入探讨多模态模型和计算机视觉

近年来,机器学习领域在从图像识别到自然语言处理的不同问题类型上取得了显着进展。然而,这些模型中的大多数都对来自单一模态的数据进行操作,例如图像、文本或语音。相比之下,现实世界的数据通常来自多种模态,例如图像…

【Linux】Linux常见指令解析上

目录 1. 前言2. ls指令3. pwd指令4. cd指令3.1 cd常见快捷指令 4. touch指令5. mkdir指令6. rmdir指令 && rm指令 (重要)6.1 rmdir指令6.2 rm指令 7. man指令 1. 前言 这篇文章我们将详细介绍一下Linux下常见的基本指令。 2. ls指令 语法: ls [选…

系列一、GitHub搜索技巧

一、GitHub搜索技巧 1.1、概述 作为程序员,GitHub大家应该都再熟悉不过了,很多时候当我们需要使用某一项技能而又无从下手时,通常会在百度(面向百度编程)或者在GitHub上通过关键字寻找相关案例,比如我想学…

Go自定义PriorityQueue优先队列使用Heap堆

题目 分析 每次找最大的,pop出来 然后折半,再丢进去 go写法 go如果想用heap,要实现less\len\swap\push\pop 但可以偷懒,用sort.IntSlice,已经实现了less\len\swap 但由于目前是大根堆,要重写一下less 因此&#xff…

PWM/PFM 自动切换升压型转换器系统(一)

通过对芯片整体设计要求的考虑,搭建全负载高效率升压型 DC-DC 转换器的整体系 统框架,对系统的工作过程和模块电路的功能进行简要阐述,对外围电路的选取进行准确计 算,分析系统的损耗来源,实现高效率的设计目标。 芯片…

机场信息集成系统系列介绍(8):基于视频分析的航班保障核心数据自动采集系统

目录 一、背景 二、相关功能规划 1、功能设计 2、其他设计要求 三、具体保障数据采集的覆盖点 四、相关性能指标要求 1、性能指标要求 2、算法指标要求 一、背景 基于视频分析的航班保障核心数据自动化采集系统,是ACDM系统建设的延伸,此类系统并…

Uniapp + Vue3 + Pinia + Vant3 框架搭建

现在越来越多项目都偏向于Vue3开发&#xff0c;想着uniapp搭配Vue3试试效果怎么样&#xff0c;接下来就是详细操作步骤。 初始化Uniapp Vue3项目 App.vue setup语法 <script setup>import {onLaunch,onShow,onHide} from dcloudio/uni-apponLaunch(() > {console.l…

LeetCode 热题100——单调栈

​ 个人主页&#xff1a;日刷百题 系列专栏&#xff1a;〖C语言小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 &#x1f30e;欢迎各位→点赞&#x1f44d;收藏⭐️留言&#x1f4dd; ​ ​ 写在前面&#xff1a; 递增单调栈&#xff1a;栈中元素从栈底到栈顶依次增大 递减单调栈…

【新版】软考 - 系统架构设计师(总结笔记)

个人总结学习笔记&#xff0c;仅供参考&#xff01;&#xff01;&#xff01;! →点击 笔者主页&#xff0c;欢迎关注哦&#xff08;互相学习&#xff0c;共同成长&#xff09; 笔记目录 &#x1f4e2;【系统架构设计系列】系统架构设计专业技能 计算机组成与结构操作系统信…