向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

前言

本问题是在学习Rosen梯度投影优化方法的时候遇到的问题,主要是对于正交投影矩阵(NT(NNT)-1N)的不理解,因此经过查阅资料,学习了关于向量投影的知识,记录如下。

首先需要了解 子空间和子空间的正交补。相关知识可以查阅本人的另外一篇笔记,核和值域的关系:什么是矩阵的秩?,这篇笔记中是以矩阵列向量的生成子空间为例展开的。

核心公式:

  1. R ( A H ) ∩ N ( A ) = { 0 } R(A^H) \cap N(A)=\{0\} R(AH)N(A)={0}
  2. R ( A H ) ⊕ N ( A ) = C m R(A^H) \oplus N(A) = C^m R(AH)N(A)=Cm

其中R(AH)是A的行向量的生成子空间, R ( A H ) = { y ∈ R n ∣ y = A H x , x ∈ C m } R(A^H)=\{y\in R^n|y=A^Hx,x\in C^m\} R(AH)={yRny=AHx,xCm}

N(A)是A的核子空间, N ( A ) = { x ∣ A x = 0 , x ∈ R n } N(A)=\{x|Ax=0,x\in R^n\} N(A)={xAx=0,xRn}

正文

所谓向量投影,本质上是期望将Rn空间中的任意一个n维向量,分解称为y1+y2,其中y1属于R(AH),y2属于N(A)。

1、投影矩阵

投影是一种线性变换,要求两次投影变换的结果等于一次投影变换的结果。在信号处理领域当中,一个信号经过两次滤波器和经过一次滤波器的结果是相等的,那么这个滤波器在数学上可抽象成一个投影矩阵。

写成数学公式: P 2 x = P P x = P x P^2x=PPx=Px P2x=PPx=Px。因此要求投影矩阵P是一个方阵。

可证明:R§=R(PH)。通常情况下一个方阵的行空间和列空间是不相同的,二者仅仅是同构关系,即维数相同。

即: R ( P ) ⊕ N ( P ) = C n R(P) \oplus N(P) = C^n R(P)N(P)=Cn

投影分为正交投影和斜投影。二者的区别在于,正交投影矩阵P,R§的正交补=N§,等价于,R§和N§正交。而斜投影矩阵则没有这个性质。

可证明:一个投影矩阵P,是正交投影矩阵的充要条件是:P=PH

举一个简单的例子。

R2空间,向x轴的正交投影P,只能是取一个二维向量的横坐标。R§就是x轴,N§就是y轴,x轴的正交补是y轴。

R2空间,向x轴的斜投影Q,比如是指向东偏南45度➘方向的的投影。R(Q)就是x轴,x轴的正交补是y轴,而N(Q)是沿着东偏南45度➘方向的一维子空间,即N(Q)={ x|x = a(1,-1)T, a \in R}。

2、如何将一个向量投影到行满秩矩阵A的行向量生成子空间?

现在已知一个行满秩矩阵 A m m × n A^{m\times n}_m Amm×n,R(AH)是由A的行向量生成的子空间。由上面的例子,可以猜到,n维欧氏空间向R(AH)的正交投影是唯一的,斜投影是不唯一的(此处考虑典型情况,而非考虑A行列满秩的极端情况)。

现在推导一个由A构成的正交投影矩阵P。

  1. y = y 1 + y 2 , y 1 ∈ R ( A H ) , y 2 ∈ R ⊥ ( A H ) y=y_1+y_2,y_1\in R(A^H),y_2\in R^\perp(A^H) y=y1+y2,y1R(AH),y2R(AH)
  2. P y = P ( y 1 + y 2 ) = y 1 Py=P(y_1+y_2)=y_1 Py=P(y1+y2)=y1
  3. y 1 ∈ R ( A H ) , ∴ y 1 = A H x y_1\in R(A^H),\therefore y_1=A^Hx y1R(AH),y1=AHx,x是一个m维的列向量,即y1可表示为A的行向量的线性组合
  4. y 2 ∈ R ⊥ ( A H ) = N ( A ) , A y 2 = 0 , A y = A A H x y_2\in R^\perp(A^H)=N(A),Ay_2=0,Ay=AA^Hx y2R(AH)=N(A),Ay2=0,Ay=AAHx
  5. x = ( A A H ) − 1 A y , y 1 = [ A H ( A A H ) − 1 A ] y x=(AA^H)^{-1}Ay,y_1 = [A^H(AA^H)^{-1}A]y x=(AAH)1Ay,y1=[AH(AAH)1A]y
  6. P = A H ( A A H ) − 1 A = P H P = A^H(AA^H)^{-1}A=P^H P=AH(AAH)1A=PH

从第5步可以知道为什么需要A行满秩了,只有行满秩的矩阵, y 1 ∈ R ( A H ) , y 1 = A H x y_1\in R(A^H),y_1=A^Hx y1R(AH),y1=AHx,其中x才有唯一解。

至此,我们知道 P = A H ( A A H ) − 1 A P = A^H(AA^H)^{-1}A P=AH(AAH)1A是一个正交投影矩阵,将一个向量投影到A的行向量的生成子空间。

3、关于Rosen梯度投影法

Rosen梯度投影法的可行下降方向: P k = Q ( − g k ) = ( I − N T ( N N T ) − 1 N ) g k P^k = Q(-g^k) = (I-N^T(NN^T)^{-1}N)g^k Pk=Q(gk)=(INT(NNT)1N)gk

Q是一个投影矩阵,并且投向 N T ( N N T ) − 1 N N^T(NN^T)^{-1}N NT(NNT)1N的正交补空间,N是由积极约束的法向量组成的矩阵,因此P是负梯度方向向积极约束的法向量张成的行空间的正交补的投影。从几何上看,就是将负梯度方向投影向了积极约束的超平面的交线上。

需要注意,Rosen梯度投影法的约束条件是一个多面集。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223800.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高级人工智能之群体智能:蚁群算法

群体智能 鸟群: 鱼群: 1.基本介绍 蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。 蚁群算法的基本步骤…

【YOLOV8预测篇】使用Ultralytics YOLO进行检测、分割、姿态估计和分类实践

目录 一 安装Ultralytics 二 使用预训练的YOLOv8n检测模型 三 使用预训练的YOLOv8n-seg分割模型 四 使用预训练的YOLOv8n-pose姿态模型 五 使用预训练的YOLOv8n-cls分类模型 <

Altium Designer(AD24)新工程复用设计文件图文教程及视频演示

&#x1f3e1;《专栏目录》 目录 1&#xff0c;概述2&#xff0c;复用方法一视频演示2.1&#xff0c;创建工程2.2&#xff0c;复用设计文件 3&#xff0c;复用方法二视频演示4&#xff0c;总结 欢迎点击浏览更多高清视频演示 1&#xff0c;概述 本文简述使用AD软件复用设计文件…

1860_peakhold的喷油器

Grey 全部学习内容汇总&#xff1a; GitHub - GreyZhang/g_hardware_basic: You should learn some hardware design knowledge in case hardware engineer would ask you to prove your software is right when their hardware design is wrong! 1860_peak&hold的喷油器…

python实现bp神经网络对csv文件进行数据预测

参考资源&#xff1a; sklearn库 bp神经网络[从原理到代码一篇搞定]&#xff08;2&#xff09;_sklearn 神经网络-CSDN博客 十分钟上手sklearn&#xff1a;安装&#xff0c;获取数据&#xff0c;数据预处理 - 知乎 (zhihu.com) 一个实例讲解如何使用BP神经网络(附代码) - 知…

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(五)CEEMDAN

目录 前言 1 完全自适应噪声集合经验模态分解CEEMDAN介绍 1.1 CEEMDAN简介 1.2 CEEMDAN主要特点 2 CEEMDAN分解的步骤 3 基于Python的CEEMDAN实现 3.1 导入数据 3.2 CEEMDAN分解 3.3 信号分量的重构 3.4 信号分量的处理 3.5 CEEMDAN优缺点 往期精彩内容&#xff1a;…

Qt designer界面和所有组件功能的详细介绍(全!!!)

PyQt5和Qt designer的详细安装教程&#xff1a;https://blog.csdn.net/qq_43811536/article/details/135185233?spm1001.2014.3001.5501 目录 1. 界面介绍2. Widget Box 常用组件2.1 Layouts&#xff08;布局&#xff09;2.2 Spacers&#xff08;间隔器&#xff09;2.3 Item V…

【黑马甄选离线数仓day10_会员主题域开发_DWS和ADS层】

day10_会员主题域开发 会员主题_DWS和ADS层 DWS层开发 门店会员分类天表: 维度指标: 指标&#xff1a;新增注册会员数、累计注册会员数、新增消费会员数、累计消费会员数、新增复购会员数、累计复购会员数、活跃会员数、沉睡会员数、会员消费金额 维度: 时间维度&#xff08…

网络7层架构

网络 7 层架构 什么是OSI七层模型&#xff1f; OSI模型用于定义并理解数据从一台计算机转移到另一台计算机&#xff0c;在最基本的形式中&#xff0c;两台计算机通过网线和连接器相互连接&#xff0c;在网卡的帮助下共享数据&#xff0c;形成一个网络&#xff0c;但是一台计算…

8、SpringCloud高频面试题-版本1

1、SpringCloud组件有哪些 SpringCloud 是一系列框架的有序集合。它利用 SpringBoot 的开发便利性巧妙地简化了分布式系统基础设施的开发&#xff0c;如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等&#xff0c;都可以用 SpringBoot 的开发风格做到一键启…

湘潭大学-软件工程-选择判断题复习

说明 期末考试单选题和判断题占30分&#xff0c;单选20&#xff0c;判断10分 单选题 选错误的 B依靠松散组合的互联网大众是无法开发出高质量软件产品的 D、所有命名都应尽量使用缩写 C、采用团队的组织方式 D、软件需求一旦确定就不允许变化 以下哪一项是通过运行程序…

全方位掌握卷积神经网络:理解原理 优化实践应用

计算机视觉CV的发展 检测任务 分类与检索 超分辨率重构 医学任务 无人驾驶 整体网络架构 卷积层和激活函数&#xff08;ReLU&#xff09;的组合是网络的核心组成部分 激活函数(ReLU&#xff09; 引入非线性&#xff0c;增强网络的表达能力。 卷积层 负责特征提取 池化层…

MySQL——复合查询

目录 一.基本查询回顾 二. 多表查询 三.自连接 四.子查询 1.单行子查询 2.多行子查询 3.多列子查询 4.在from子句中使用子查询 5.合并查询 一.基本查询回顾 准备数据库&#xff1a; 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为…

.net core 生成jwt+swagger-通过 IHttpContextAccessor读取token信息

1.安装jwt相关包 <ItemGroup><PackageReference Include"Microsoft.AspNetCore.Authentication.JwtBearer" Version"6.0.25" /><PackageReference Include"Microsoft.IdentityModel.Tokens" Version"7.0.3" /><P…

一个简单的设置,就能摆脱iPad音量键随方向变的困扰

新款iPad Air 5的发布和iPhone SE 3的评审可能是苹果本月最大的新闻&#xff0c;但该公司也悄悄发布了一项功能&#xff0c;自2010年发布第一款以来&#xff0c;iPad用户一直在等待&#xff1a;音量按钮现在在横向模式下很有意义。让我们解释一下。 每台iPad侧面的音量按钮在人…

HTML面试题

HTML 面试题汇总 1. 什么是 <!DOCTYPE>&#xff1f;是否需要在 HTML5 中使用&#xff1f; 参考答案&#xff1a; 它是 HTML 的文档声明&#xff0c;通过它告诉浏览器&#xff0c;使用哪一个 HTML 版本标准解析文档。 在浏览器发展的历史中&#xff0c;HTML 出现过很多个…

032 - STM32学习笔记 - TIM基本定时器(一) - 定时器基本知识

032 - STM32学习笔记 - TIM定时器&#xff08;一&#xff09; - 基本定时器知识 这节开始学习一下TIM定时器功能&#xff0c;从字面意思上理解&#xff0c;定时器的基本功能就是用来定时&#xff0c;与定时器相结合&#xff0c;可以实现一些周期性的数据发送、采集等功能&#…

连锁便利店管理系统有什么用

连锁便利店管理系统对于连锁便利店的运营和管理非常有用。以下是一些常见的用途&#xff1a; 1. 库存管理&#xff1a;连锁便利店通常需要管理多个门店的库存&#xff0c;管理系统可以帮助实时掌握各个门店的库存情况&#xff0c;包括商品数量、进货记录、库存调拨等。这样可以…

服务器数据恢复-误操作导致xfs分区数据丢失的数据恢复案例

服务器数据恢复环境&#xff1a; 某品牌OceanStorT系列某型号存储MD1200磁盘柜&#xff0c;组建的raid5磁盘阵列。上层分配了1个lun&#xff0c;安装的linux操作系统&#xff0c;划分两个分区&#xff0c;分区一通过lvm进行扩容&#xff0c;分区二格式化为xfs文件系统。 服务器…