ESP32-S3 实战指南:BOOT-KEY 按键驱动开发全解析

一、基础知识

本篇我们使用 BOOT 按键来学习一下 GPIO 功能,首先补充一下相关术语介绍。

1、GPIO(General Purpose Input/Output)

  • GPIO 是微控制器上的通用引脚,既可以作为输入(读取外部信号),也可以作为输出(控制外部设备)。
  • 在 ESP32 中,GPIO 引脚可以灵活配置,用于多种用途,例如读取传感器数据、控制 LED、驱动电机等。

2、输入(Input)

  • 当 GPIO 配置为输入时,它可以读取外部信号的状态(高电平或低电平)。
  • 例如,读取按键是否被按下(按键按下时,引脚电平会发生变化)。

3、输出(Output)

  • 当 GPIO 配置为输出时,它可以控制外部设备的状态(例如点亮 LED 或驱动继电器)。
  • 例如,将 GPIO 设置为高电平(3.3V)来点亮 LED,或设置为低电平(0V)来关闭 LED。

4、内部上拉(Pull-up)和下拉(Pull-down)

  • 上拉电阻:将 GPIO 引脚通过内部电阻连接到电源(3.3V),使引脚在未连接外部信号时保持高电平。
  • 下拉电阻:将 GPIO 引脚通过内部电阻连接到地(GND),使引脚在未连接外部信号时保持低电平。
  • 这些电阻可以确保 GPIO 引脚在没有外部信号时处于确定的状态,避免悬空(floating)导致的不稳定。

5、中断引脚(Interrupt Pin)

  • 中断是一种硬件机制,当 GPIO 引脚的状态发生变化时(例如从高电平变为低电平),会触发一个中断信号。
  • 中断可以让微控制器立即响应外部事件,而不需要不断轮询(polling)引脚状态。
  • 例如,当按键按下时,GPIO 引脚的电平变化会触发中断,微控制器可以立即执行相应的处理程序。

6、BOOT 按键和 IO0 引脚

  • BOOT 按键:ESP32 开发板上通常有一个 BOOT 按键,用于进入下载模式或复位。
  • IO0 引脚:这是 ESP32 的一个 GPIO 引脚,编号为 GPIO0。它通常与 BOOT 按键连接。
  • 当 BOOT 按键按下时,IO0 引脚的电平会发生变化(例如从高电平变为低电平)。

7、设置为 GPIO 中断,接收按键请求

  • 将 IO0 引脚配置为中断引脚,用于检测 BOOT 按键的按下事件。
  • 当按键按下时,IO0 引脚的电平变化会触发中断,微控制器可以立即执行相应的代码(例如处理按键请求)。

二、设计图 

更多详细资料请查询官网 立创·实战派ESP32-S3开发板 - 立创开源硬件平台

三、实战操作

1、Copy 示例工程 sample_project

示例工程路径:$HOME/esp/esp-idf/tools/templates/sample_project

直接在 esp-idf 目录下搜索 sample_project 也可以找到,接着复制一份工程代码到自己的编码路径,然后修改文件夹名字为 boot_key。

可以看到模板工程下只有一个空函数 app_main,函数体还没有代码,我们需要参考官方提供的 gpio 示例进行编码,路径在:$HOME/esp/esp-idf/examples/peripherals/gpio/generic_gpio

2、引入头文件

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"// ...

使用 printf 函数,需要添加 stdio.h 头文件。string.h 和 stdlib.h 我们这里用不着,可以去掉。接下来是 3 个 freeRTOS 的头文件,最后一个头文件是用于 gpio 的配置。 

3、gpio 配置

3.1、官方示例

首先看一下官方源码示例是怎么写的,再来看看我们需要修改哪些地方,代码注释如下:

// 官方示例代码
void app_main(void)
{// Step1、定义了一个 gpio_config_t 结构体变量。gpio_config_t io_conf = {};// Step2、定义引脚中断类型,这里是 GPIO_INTR_DISABLE,表示中断关闭io_conf.intr_type = GPIO_INTR_DISABLE;// Step3、配置模式,这里是 GPIO_MODE_OUTPUT 表示输出模式io_conf.mode = GPIO_MODE_OUTPUT;// Step4、配置引脚io_conf.pin_bit_mask = GPIO_OUTPUT_PIN_SEL;// Step5、配置是否打开下拉电阻io_conf.pull_down_en = 0;// Step6、配置是否打开上拉电阻io_conf.pull_up_en = 0;// Step7、使用 gpio_config 函数进行配置gpio_config(&io_conf);
}

3.2、对应改动点说明

改动点1、修改引脚中断类型

//falling edge interrupt
io_conf.intr_type = GPIO_INTR_NEGEDGE;

开发板上的按键没有按下的时候是高电平,按下去以后是低电平,因此定义成下降沿中断。这里原来是 GPIO_INTR_DISABLE,表示中断关闭,这里我们修改为 GPIO_INTR_NEGEDGE,即下降沿中断。这些宏定义在 gpio_types.h 文件中被定义,我们在 gpio_example_main.c 文件中的 GPIO_INTR_DISABLE 上单击右键,然后选择“转到定义”,就可以找到这几个宏定义,如下所示:

typedef enum {GPIO_INTR_DISABLE = 0,     /*!< Disable GPIO interrupt                             */GPIO_INTR_POSEDGE = 1,     /*!< GPIO interrupt type : rising edge                  */GPIO_INTR_NEGEDGE = 2,     /*!< GPIO interrupt type : falling edge                 */GPIO_INTR_ANYEDGE = 3,     /*!< GPIO interrupt type : both rising and falling edge */GPIO_INTR_LOW_LEVEL = 4,   /*!< GPIO interrupt type : input low level trigger      */GPIO_INTR_HIGH_LEVEL = 5,  /*!< GPIO interrupt type : input high level trigger     */GPIO_INTR_MAX,
} gpio_int_type_t;

改动点2、修改 gpio 模式

//set as input mode
io_conf.mode = GPIO_MODE_INPUT;

修改为输入模式,就可以读取外部信号的状态,按键按下时,捕获到引脚电平变化信号。

改动点3、修改引脚

//bit mask of the pins GPIO0
io_conf.pin_bit_mask = 1<<GPIO_NUM_0;

因为 BOOT 按键连接到了 GPIO0,所以这里我们把原来的 GPIO_OUTPUT_PIN_SEL 修改为 1<<GPIO_NUM_0,实际上 GPIO_NUM_0 是一个宏定义,值为 0。

改动点4、修改打开上下拉电阻

//disable pull-down mode
io_conf.pull_down_en = 0;
//enable pull-up mode
io_conf.pull_up_en = 1;

打开上拉电阻,将 GPIO 引脚通过内部电阻连接到电源,使引脚在未连接外部信号时保持高电平,从而避免引脚悬空导致的不稳定问题。

补充:为什么不用下拉电阻?

下拉电阻也可以用于避免引脚悬空,但它会将引脚在没有外部信号时拉低到地(0V)。在按键检测中,通常使用上拉电阻,因为按键按下时会将引脚拉低到地,这种设计更符合直觉和常见的硬件电路设计。

3.3、改动代码整合 

改动后的代码可以简化成这样子,

// ...void app_main(void)
{//zero-initialize the config structure.gpio_config_t io_conf = {.intr_type = GPIO_INTR_NEGEDGE,.mode = GPIO_MODE_DEF_INPUT,.pin_bit_mask = 1<<GPIO_NUM_0,.pull_down_en = 0,.pull_up_en = 1};//configure GPIO with the given settingsgpio_config(&io_conf);}

4、中断服务函数

4.1、官方示例

同样的,首先看一下官方源码示例是怎么写的,再来看看我们需要修改哪些地方,代码注释如下:

// 官方示例代码#define ESP_INTR_FLAG_DEFAULT 0static QueueHandle_t gpio_evt_queue = NULL;static void IRAM_ATTR gpio_isr_handler(void* arg)
{uint32_t gpio_num = (uint32_t) arg;xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL);
}static void gpio_task_example(void* arg)
{uint32_t io_num;for (;;) {if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));}}
}void app_main(void)
{// ...// Step1、创建了一个队列,队列消息数量为 10,gpio_evt_queue 是队列句柄gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));// Step2、创建了一个任务,任务名称为 gpio_task_examplexTaskCreate(gpio_task_example, "gpio_task_example", 2048, NULL, 10, NULL);// Step3、启动 GPIO 中断服务,其中 ESP_INTR_FLAG_DEFAULT 的值是 0gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);// Step4、添加某个 GPIO 的中断,第 1 个参数指定哪个 GPIO 产生中断,第 2 个参数是中断服务函数的名称,第 3 个参数是中断服务函数的参数gpio_isr_handler_add(GPIO_INPUT_IO_0, gpio_isr_handler, (void*) GPIO_INPUT_IO_0);// ...
}

4.2、对应改动点说明

gpio_isr_handler_add(GPIO_NUM_0, gpio_isr_handler, (void*) GPIO_NUM_0);

这里我们只需要添加 GPIO0 的中断,因此修改了参数1、参数3。

4.3、改动代码整合

// ...void app_main(void)
{// ...//create a queue to handle gpio event from isrgpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));//start gpio taskxTaskCreate(gpio_task_example, "gpio_task_example", 2048, NULL, 10, NULL);//install gpio isr servicegpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);//hook isr handler for specific gpio pingpio_isr_handler_add(GPIO_NUM_0, gpio_isr_handler, (void*) GPIO_NUM_0);
}

5、完整代码

#include <stdio.h>
// #include <string.h>
// #include <stdlib.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"#define ESP_INTR_FLAG_DEFAULT 0static QueueHandle_t gpio_evt_queue = NULL;static void IRAM_ATTR gpio_isr_handler(void* arg)
{uint32_t gpio_num = (uint32_t) arg;xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL);
}static void gpio_task_example(void* arg)
{uint32_t io_num;for (;;) {if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));}}
}void app_main(void)
{//zero-initialize the config structure.gpio_config_t io_conf = {.intr_type = GPIO_INTR_NEGEDGE,.mode = GPIO_MODE_DEF_INPUT,.pin_bit_mask = 1<<GPIO_NUM_0,.pull_down_en = 0,.pull_up_en = 1};//configure GPIO with the given settingsgpio_config(&io_conf);//create a queue to handle gpio event from isrgpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));//start gpio taskxTaskCreate(gpio_task_example, "gpio_task_example", 2048, NULL, 10, NULL);//install gpio isr servicegpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);//hook isr handler for specific gpio pingpio_isr_handler_add(GPIO_NUM_0, gpio_isr_handler, (void*) GPIO_NUM_0);
}

四、编译下载

配置 menu config,设置 flash size 为 16 MB,

 一键烧录,

boot 按键效果,

可以看到,当我们按下 boot 键的时候,控制台输出 GPIO[0] intr, val: 0 符合预期。

五、生成默认配置

编译下载后,结果没有问题的话,使用 idf.py save-defconfig 命令生成 sdkconfig.defaults 文件。这个命令要打开“命令终端”执行,看结果的“串口终端”不行。

idf.py save-defconfig 

回车执行命令后,会看到工程中多了一个 sdkconfig.defaults 文件,点击打开 sdkconfig.defaults 文件,会看到里面的内容。这个文件里面包含了我们对 menuconfig 的修改。

这时候,我们可以把工程中配置和编译生成的文件夹全部去掉,最后的文件如下所示:

使用 VSCode 重新打开工程,在选择目标芯片后,sdkconfig.defaults 文件里面的配置就配置到 menuconfig 里面了,省去了手动配置 menucofig。如果 menuconfig 里面配置的内容很多,这个文件就显得很有必要了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/22383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win11 24h2 不能正常使用ensp的问题(已解决)

因为Win11 24h2的内核大小更改&#xff0c;目前virtualbox在7.1.4中更新解决了。所以Win11 24H2系统版本无法使用 5.x.xx的virtualbox版本&#xff0c;virtualbox对于这个5.x.xx版本早已停止维护&#xff0c;所以这个以后不会有调整。 对应的报错代码是 virtualbox错误代码&…

常用电脑,护眼软件推荐 f.lux 3400K | 撰写论文 paper

常用电脑&#xff1f;平均每天用 5 个小时&#xff1f;你就要考虑用一个护眼软件了&#xff0c;对皮肤也好。因为电脑屏幕有辐射&#xff0c;比如蓝光。 f.lux 作为一款专业护眼软件&#xff0c;值得使用。之前用了三年的 Iris Pro&#xff0c;现在 f.lux 做的更好了。 使用…

在 Mac ARM 架构的 macOS 系统上启用 F1 键作为 Snipaste 的截屏快捷键

在 Mac ARM 架构的 macOS 系统上启用 F1 键作为 Snipaste 的截屏快捷键&#xff0c;主要涉及到两个方面&#xff1a;确保 F1 键作为标准功能键工作 和 在 Snipaste 中设置 F1 为快捷键。 因为 Mac 默认情况下&#xff0c;F1-F12 键通常用作控制屏幕亮度、音量等系统功能的快捷键…

开源一款I2C电机驱动扩展板-FreakStudio多米诺系列

总线直流电机扩展板 原文链接&#xff1a; FreakStudio的博客 摘要 设计了一个I2C电机驱动板&#xff0c;通过I2C接口控制多个电机的转速和方向&#xff0c;支持刹车和减速功能。可连接16个扩展板&#xff0c;具有PWM输出、过流过热保护和可更换电机驱动芯片。支持按键控制…

Spring Security+JWT+Redis实现项目级前后端分离认证授权

1. 整体概述 权限管理包括用户身份认证和授权两部分&#xff0c;简称认证授权。对于需要访问控制到资源&#xff0c;用户首先经过身份认证&#xff0c;认证通过后用户具有该资源的访问权限方可访问。 1.1 认证概述 认证是确认用户身份的过程&#xff0c;确保用户是谁。 1.1.1 …

数据结构系列三:List+顺序表+ArrayList

数据结构系列三 一、List&#xff08;1&#xff09;什么是List&#xff08;2&#xff09;常见接口介绍&#xff08;3&#xff09;List的使用 二、顺序表与ArrayList&#xff08;1&#xff09;线性表&#xff08;2&#xff09;顺序表&#xff08;3&#xff09;顺序表常用方法的模…

全局变量,局部变量

在main函数中又定义一遍全局变量&#xff1a;会导致程序出错 因为在函数中调用这个全局变量时&#xff0c;调用的值是在头文件下面的初始值&#xff0c;虽然你在main函数中改变了变量的值&#xff0c;但是你在main函数中重新定义了 如果这样写会过50%的数据&#xff0c;因为在…

Unity贴图与模型相关知识

一、贴图 1.贴图的类型与形状 贴图类型 贴图形状 2.在Unity中可使用一张普通贴图来生成对应的法线贴图&#xff08;但并不规范&#xff09; 复制一张该贴图将复制后的贴图类型改为Normal Map 3.贴图的sRGB与Alpha sRGB&#xff1a;勾选此选项代表此贴图存储于Gamma空间中…

互联网搜索、联网搜索 API 的探索与公开接口、大模型联网搜索接口、全网搜索接口

互联网搜索、联网搜索 API 的探索与公开接口、大模型联网搜索接口、全网搜索接口 关键词&#xff1a;互联网搜索、API 接口、实时数据、大模型联网、智能问答、数据采集、技术实践、成本优势、市场对比 概述 在当前大模型及人工智能技术迅速发展的背景下&#xff0c;如何让离…

牛客练习赛134 —— B题 python 补题 + 题解

牛客练习赛134 B 题目描述 示例输入&#xff1a; 1 5 1 2 4 5 6 2 5 4 6 9示例输出&#xff1a; 32解题思路&#xff1a; 题目大意 给定一个2行n列的矩阵&#xff0c;允许交换两列一次&#xff0c;从左上角(1,1)走到右下角(2,n)&#xff0c;每一步只能向右或向下移动&#x…

电脑开机一段时间就断网,只有重启才能恢复网络(就算插网线都不行),本篇文章直接解决,不要再看别人的垃圾方法啦

下面的是我解决问题的心路历程&#xff0c;不想看的可以直接跳到解决方法上面&#xff01; 内心思路&#xff1a; w11电脑更新过系统后&#xff0c;我的电脑是常年不关机的&#xff0c;但是一天突然断网&#xff0c;试了很多方法都连不上&#xff0c;重启电脑就会好&#xff0…

Ubuntu部署ktransformers

准备工作 一台服务器 CPU&#xff1a;500G GPU&#xff1a;48G&#xff08;NVIDIA4090&#xff09; 系统&#xff1a;Ubuntu20.04&#xff08;github的文档好像用的是22.04&#xff09; 第一步&#xff1a;下载权重文件 1.下载hfd wget https://hf-mirror.com/hfd/hfd.s…

【Elasticsearch】同一台服务器部署集群

【Elasticsearch】同一台服务器部署集群 1. 同一台服务器搭建ES集群2. 配置不同的node节点3. ES集群中安装IK分词器4. 启动es集群5. Kibana访问集群6. es-head7. 集群中创建索引7.1 什么是分片以及分片的好处7.2 副本&#xff08;Replication&#xff09;7.3 通过es-head创建索…

1-1 VS Code+Keil5+STM32CubeMX开发环境搭建

1.0 卸载相关程序 使用这个方式安装工具&#xff0c;先将原先下载安装的软件去掉&#xff0c;然后再安装新的软件&#xff0c;这个卸载过程需要将原来的工具干净的卸载掉&#xff0c;使用专门的卸载工具&#xff0c;将注册表等文件也全部删除掉。 对于STM32CubeMX还要删除&…

C# 从基础神经元到实现在0~9数字识别

训练图片:mnist160 测试结果:1000次训练学习率为0.1时,准确率在60%以上 学习的图片越多&#xff0c;训练的时候越长(比如把 epochs*10 10000或更高时)效果越好 using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System.Windo…

【算法与数据结构】单调队列

目录 单调队列 使用单调队列维护滑动窗口 具体过程&#xff1a; 代码实现&#xff1a; 复杂度分析&#xff1a; 使用单调队列优化动态规划 例题 单调队列 单调队列(deque)是一种特殊的队列&#xff0c;队列中的元素始终按严格递增或者递减排列。这样就可以保证队头元素…

矩阵的扩展运算(MATLAB和pytorch实例)

秩&#xff08;Rank&#xff09;的定义 秩的计算 初等行变换法&#xff08;最常用&#xff09;行列式法&#xff08;仅适用于方阵&#xff09; 满秩的分类方阵的满秩非方阵的满秩几何意义应用场景判断方法 矩阵的特征值 定义求解特征值 特征方程步骤 关键性质 迹与行列式相似矩…

python面试题整理

Python 如何处理异常&#xff1f; Python中&#xff0c;使用try 和 except 关键字来捕获和处理异常 try 块中放置可能会引发异常的代码&#xff0c;然后在except块中处理这些异常。 能补充一下finally的作用吗&#xff1f; finally 块中的代码无论是否发生异常都会执行&#xf…

linux之perf(17)PMU事件采集脚本

Linux之perf(17)PMU事件采集脚本 Author: Once Day Date: 2025年2月22日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 全系列文章可参考专栏: Perf性能分析_Once_day的博…

Java数据结构-排序

目录 一.本文关注焦点 二.七大排序分析及相关实现 1.冒泡排序 2.简单选择排序 3.直接插入排序 4.希尔排序 5.堆排序 ​编辑 6.归并排序 7.快速排序 一.本文关注焦点 各种排序的代码实现及各自的时间空间复杂度分析及稳定性。 时间复杂度&#xff1a;在比较排序中主…