AIGC:大语言模型LLM的幻觉问题

引言

在使用ChatGPT或者其他大模型时,我们经常会遇到模型答非所问、知识错误、甚至自相矛盾的问题。

虽然大语言模型(LLMs)在各种下游任务中展示出了卓越的能力,在多个领域有广泛应用,但存在着幻觉的问题:即生成与用户输入不符、与先前生成的内容矛盾或与已知世界知识不符的内容。

这种现象对LLMs在现实世界场景中的可靠性构成了重大挑战。在准确率要求非常高的场景下幻觉是不可接受的,比如医疗领域、金融领域等。

目前在LLM幻觉问题上已经有无数的研究,比如关于幻觉的检测、幻觉的评估基准分类、缓解幻觉的方法等。

今天我会结合几篇有关LLM幻觉问题的综述论文,来理解LLM幻觉的分类、检测方法、评估和基准、减轻方法等。

最近的一篇是来自哈尔滨工业大学和华为的研究团队,长达49页,对有关LLM幻觉问题的最新进展来了一个全面而深入的概述。

这篇综述(下文简称:综述1)从LLM幻觉的创新分类方法出发,深入探究了可能导致幻觉的因素,并对检测幻觉的方法和基准进行了概述。

论文链接:https://arxiv.org/abs/2311.05232

另外还有一篇综述(下文简称:综述2),来自腾讯AI实验室和一些国内大学的研究团队,综述提出了LLM幻觉现象的分类法和评估基准,分析旨在减轻LLM幻觉的现有方法,并确定未来研究的潜在方向。

论文链接:https://arxiv.org/pdf/2309.01219.pdf

还有一篇有关幻觉的论文(下文简称:论文1),对各种文本生成任务中的幻觉现象进行了新的分类,从而提供了理论分析、检测方法和改进方法。

论文链接:https://arxiv.org/pdf/2309.06794v1.pdf

1 幻觉的分类

在综述2中,将LLMs幻觉分为三种:输入冲突幻觉上下文冲突幻觉事实冲突幻觉

  • 输入冲突幻觉:是指生成的内容与用户提供的输入不符;

  • 上下文冲突幻觉:是指生成的内容与之前生成的信息相矛盾;

  • 事实冲突幻觉:是指生成的内容与已知的世界知识不符。

图注:3种幻觉的定义

而在最新的综述1中,将LLM幻觉分为两种:事实型幻觉忠实度幻觉

如上图所示,左边是事实型幻觉:当LLM被问到谁是第一个在月球上漫步的人时,LLM编了个人物出来,甚至还说得有模有样。右边是忠实度幻觉:LLM在看到这段新闻后,直接把年份概括错了。

下图是一张更为详细的LLM幻觉种类图,包括更为细致的分类:事实型幻觉包括事实不一致、事实捏造;忠实度幻觉又包括:指令-答案的不一致、文本不一致,以及逻辑不一致。

图注:LLM幻觉种类图

总的来说,结合事实、上下文、输入的不一致,幻觉的定义和分类上是相似的。

结合常见的下游任务,比如机器翻译、问答系统、对话系统、文本摘要、LLM知识图谱和视觉问答系统,论文1总结了典型的幻觉现象,如下表所示:

 2 幻觉的来源

综述2认为产生幻觉的主要原因有预训练数据收集、知识GAP和大模型优化过程三个方面。

最新的综述1也深入探讨LLM产生幻觉的根本原因,主要分为三个关键方面:数据、训练和推理。

结合起来,我们具体来看下幻觉的来源:

2.1 幻觉来自数据

  • 预训练数据:大模型的知识和能力主要来自与预训练数据,如果预训练数据使用了不完整或者过期的数据,那么就很可能导致知识的错误,从而引起幻觉现象。

  • 数据利用:LLMs 往往会捕捉到虚假的相关性,在回忆知识(尤其是长尾信息)和复杂推理场景中表现出困难,从而进一步加剧幻觉。

2.2 幻觉来自训练

  • 预训练阶段:LLMs在这一阶段学习通用表征并捕捉广泛的知识,通常采用基于transformer的架构,在庞大的语料库中进行因果语言建模。但是,固有的架构设计和研究人员所采用的特定训练策略,可能会产生与幻觉相关的问题。

  • 对齐阶段:一般涉及两个主要过程,即监督微调和从人类反馈中强化学习(RLHF)。虽然对齐能显著提高 LLM 响应的质量,但也会带来产生幻觉的风险,主要分为两方面:能力不对齐(Capability Misalignment)和信念不对齐(Belief Misalignment)。

2.3 幻觉来自生成/推理

经过预训练和对齐后,解码在体现 LLM 能力方面发挥着重要作用。然而,解码策略的某些缺陷可能导致 LLM 出现幻觉。综述1深入探讨源于解码过程的潜在原因,并强调两个关键因素:

  • 解码策略固有的随机性(Inherent Sampling Randomness):比如采用采样生成策略(如top-p和top-k)引入的随机性也可能导致幻觉的产生。

  • 不完善的解码表示(Imperfect Decoding Representation):在解码阶段,LLM 使用顶层表示法预测下一个标记。然而,顶层表示法也有其局限性,主要表现在两个方面:上下文关注不足(Insufficient Context Attention)和Softmax瓶颈(Softmax Bottleneck)。

3 幻觉的检测

检测 LLM 中的幻觉对于确保生成内容的可靠性和可信度至关重要。传统的衡量标准主要依赖于词语重叠,无法区分可信内容和幻觉内容之间的细微差别。这样的挑战凸显了为 LLM 幻觉量身定制更复杂的检测方法的必要性。

鉴于这些幻觉的多样性,检测方法也相应地有所不同。

在综述1中,全面介绍了针对事实性幻觉忠实性幻觉的主要幻觉检测策略。

3.1 事实性幻觉的检测

事实性幻觉的检测方法:通常分为 "检索外部事实"(Retrieve External Facts)和 "不确定性估计"(Uncertainty Estimation)。

检索外部事实:为了有效地指出 LLM 输出中的事实不准确之处,一种直观的策略是将模型生成的内容与可靠的知识来源进行比较,如下图 3 所示。

虽然许多幻觉检测方法都依赖外部知识源进行事实检查,但有几种方法可以在零资源环境下解决这一问题,从而无需检索。

这些策略背后的基本前提是,LLM 幻觉的起源本质上与模型的不确定性有关。

因此,通过对模型生成的事实内容的不确定性进行估计,就可以检测出幻觉。

不确定性估计的方法大致可分为两种:基于内部状态和 LLM 行为,如图 4 所示。前者的前提是可以访问模型的内部状态,而后者则适用于更受限制的环境,仅利用模型的可观测行为来推断其潜在的不确定性。

3.2 忠实性幻觉的检测

忠实性幻觉的检测方法:主要侧重于确保生成的内容与给定上下文保持一致,从而避免无关或矛盾输出的潜在隐患。如下图5探讨在 LLM 生成中检测不忠实的方法。

  • 基于事实度量:通过检测生成内容与源内容之间的事实重叠度来评估忠实度。

  • 基于分类器的度量:利用经过训练的分类器来区分生成内容与源内容之间的关联程度。

  • 基于QA的度量方法:利用问题解答系统来验证源内容与生成内容之间的信息一致性。

  • 不确定性估计:通过测量模型对其生成输出的置信度来评估忠实度。

  • 基于prompt的度量方法:让LLM充当评估者,通过特定的prompt策略来评估生成内容的忠实度。

4 幻觉的评估

针对不同类型的幻觉,采用的评估方式不一样。

现有针对幻觉的工作,提出了各种基准来评估LLM中的幻觉,如下表5所示:

现有的基准主要根据LLMs的两种不同能力来评估幻觉:生成事实陈述或判别事实陈述与非事实陈述的能力。下表说明了这两种评估形式的区别。

  • Generation 生成式基准:将幻觉看作一种生成特征,类似于流畅度和连贯性,并对LLM生成的文本进行评估。例如,TruthfulQA用于评估大型模型对问题的回答的真实性,而FactScore则用于评估大型模型生成的个人传记的事实准确性。

  • Discrimination 判别式基准:考察大型模型区分真实陈述和幻觉陈述的能力。具体来说,HaluEval要求模型确定状态信息是否包含幻觉信息,而FACTOR则研究LLM是否更可能生成事实陈述而非非事实陈述。

在这些基准中,TruthfulQA是一种特殊的基准,兼具生成式和判别式两种基准,提供了一个多项选择的替代方案,以测试模型区分真实陈述的能力。

5 幻觉的解决

论文1总结了五种解决幻觉的方法,具体如下图所示:

不同下游任务解决幻觉的方法不同,具体如下图所示:

在哈工大的综述1中,全面回顾了当前减轻幻觉的方法,并根据幻觉成因对这些方法进行了系统分类。

具体来说,综述1将重点放在解决与数据相关的幻觉、与训练相关的幻觉和与推理相关的幻觉的方法上,每种方法都提供了量身定制的解决方案,以应对各自原因所固有的特定挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/223924.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能算法(GA、DBO等)求解零等待流水车间调度问题(NWFSP)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年…

5 分钟内搭建一个免费问答机器人:Milvus + LangChain

搭建一个好用、便宜又准确的问答机器人需要多长时间? 答案是 5 分钟。只需借助开源的 RAG 技术栈、LangChain 以及好用的向量数据库 Milvus。必须要强调的是,该问答机器人的成本很低,因为我们在召回、评估和开发迭代的过程中不需要调用大语言…

DaVinci各版本安装指南

链接: https://pan.baidu.com/s/1g1kaXZxcw-etsJENiW2IUQ?pwd0531 ​ #2024版 1.鼠标右击【DaVinci_Resolve_Studio_18.5(64bit)】压缩包(win11及以上系统需先点击“显示更多选项”)【解压到 DaVinci_Resolve_Studio_18.5(64bit)】。 2.打开解压后的文…

ios微信小程序table头部与左侧固定双重滚动会抖动的坑,解决思路

正常情况是左右滑动时,左侧固定不动,上下滑动时表头不动;而且需求不是完整页面滚动。而是单独这个表滚动; 第一个坑是他有一个ios自带的橡胶上下回弹效果。导致滚动时整个表都跟着回弹; 这个是很好解决。微信开发官网…

基于SpringBoot + Vue的图书管理系统

功能概述 该图书管理系统提供了一系列功能,包括图书管理、图书类型管理、读者借阅归还图书、用户管理和重置密码等。 在图书管理功能中,管理员可以方便地进行图书信息的管理。他们可以添加新的图书记录,包括书名、作者、出版社、ISBN等信息&a…

MacOS+Homebrew+iTerm2+oh my zsh+powerlevel10k美化教程

MacOS终端 你是否已厌倦了MacOS终端的大黑屏? 你是否对这种美观的终端抱有兴趣? 那么,接下来我将会教你用最简单的方式来搭建一套自己的终端。 Homebrew的安装 官网地址:Homebrew — The Missing Package Manager for macOS (o…

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。 1. 原子性指的是事务中所有操作都是原子性的,要…

从mice到missForest:常用数据插值方法优缺点

一、引言 数据插值方法在数据处理和分析中扮演着至关重要的角色。它们可以帮助我们处理缺失数据,使得数据分析更加准确和可靠。数据插值方法被广泛应用于金融、医疗、社会科学等领域,以及工程和环境监测等实际应用中。 在本文中,我们将探讨三…

P4 音频知识点——PCM音频原始数据

目录 前言 01 PCM音频原始数据 1.1 频率 1.2 振幅: 1.3 比特率 1.4 采样 1.5 量化 1.6 编码 02. PCM数据有以下重要的参数: 采样率: 采集深度 通道数 ​​​​​​​ PCM比特率 ​​​​​​​ PCM文件大小计算: ​…

堆与二叉树(下)

接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解 堆排序 给一组数据,升序(降序)排列 思路 思考:如果排列升序,我们应该建什么堆&#x…

DLLNotFoundException:xxx tolua... 错误打印

DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下: 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…

【贪心】买卖股票的最佳时机含手续费

/** 贪心:每次选取更低的价格买入,遇到高于买入的价格就出售(此时不一定是最大收益)。* 使用buy表示买入股票的价格和手续费的和。遍历数组,如果后面的股票价格加上手续费* 小于buy,说明有更低的买入价格更新buy。如…

先进制造身份治理现状洞察:从手动运维迈向自动化身份治理时代

在新一轮科技革命和产业变革的推动下,制造业正面临绿色化、智能化、服务化和定制化发展趋势。为顺应新技术革命及工业发展模式变化趋势,传统工业化理论需要进行修正和创新。其中,对工业化水平的判断标准从以三次产业比重标准为主回归到工业技…

Qt制作定时关机小程序

文章目录 完成效果图ui界面ui样图 main函数窗口文件头文件cpp文件 引言 一般定时关机采用命令行模式&#xff0c;还需要我们计算在多久后关机&#xff0c;我们可以做一个小程序来定时关机 完成效果图 ui界面 <?xml version"1.0" encoding"UTF-8"?>…

EA常见画图(类图、包图、构件图、状态图、顺序图、活动图)

EA常见活动图&#xff0c;状态图画法 类图:111&#xff08;1&#xff09;给关系添加注释&#xff08;2&#xff09;设置关系线样式 包图&#xff1a;&#xff08;1&#xff09;创建包图&#xff08;2&#xff09;在包中添加子包&#xff1a;&#xff08;3&#xff09;在包中添加…

微前端——无界wujie

B站课程视频 课程视频 课程课件笔记&#xff1a; 1.微前端 2.无界 现有的微前端框架&#xff1a;iframe、qiankun、Micro-app&#xff08;京东&#xff09;、EMP&#xff08;百度&#xff09;、无届 前置 初始化 新建一个文件夹 1.通过npm i typescript -g安装ts 2.然后可…

IDEA控制台乱码

报错情况&#xff1a; 报错原因&#xff1a;Idea的vm用的编码格式不一致&#xff1a;需要修改为UTF-8 你看Tomcat我之前下在后修改果&#xff0c;就没有报错&#xff0c;新人刚下载也有乱码问题 问题解决&#xff1a; 按我步骤来一定对 下面这俩文件打开输入&#xff1a; -D…

CSS-SVG-环形进度条

线上代码地址 <div class"circular-progress-bar"><svg><circle class"circle-bg" /><circle class"circle-progress" style"stroke-dasharray: calc(2 * 3.1415 * var(--r) * (var(--percent) / 100)), 1000" …

esp32使用lvgl,给图片取模显示图片

使用LVGL官方工具。 https://lvgl.io/tools/imageconverter 上传图片&#xff0c;如果想要透明效果&#xff0c;那么选择 输出格式C array&#xff0c;点击Convert进行转换。 下载.c文件放置到工程下使用即可。

Java开发框架和中间件面试题(1)

1.什么是Spring框架&#xff1f; Spring是一种轻量级框架&#xff0c;旨在提高开发人员的开发效率以及系统的可维护性。 我们一般说的Spring框架就是Spring Framework,它是很多模块的集合&#xff0c;使用这些模块可以很方便的协助我们进行开发。这些模块是核心容器、数据访…