智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鱼鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鱼鹰算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鱼鹰算法

鱼鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542706
鱼鹰算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鱼鹰算法参数如下:

%% 设定鱼鹰优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明鱼鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/224891.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL手工注入漏洞测试(MySQL数据库)

一、实验平台 https://www.mozhe.cn/bug/detail/elRHc1BCd2VIckQxbjduMG9BVCtkZz09bW96aGUmozhe 二、实验目标 获取到网站的KEY,并提交完成靶场。 三、实验步骤 ①、启动靶机,进行访问查找可能存在注入的页面 ②、通过测试判断注入点的位置(id) (1)…

udp广播的例子

以下是一个使用C语言描述广播发送和接收的简单示例&#xff1a; 发送端&#xff08;广播发送&#xff09;&#xff1a; #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <netinet/in.h> #inclu…

【Linux系统编程】【Google面试题改编】线程之间的同步与协调 Linux文件操作

编写程序&#xff0c;有四个线程1、2、3、4 线程1的功能就是输1,线程2的功能就是输出2,以此类推……现在有四个文件ABCD初始都为空 现要让四个文件呈如下格式&#xff1a; A: 1 22 333 4444 1 22 333 4444… B: 22 333 4444 1 22 333 4444 1… C: 333 4444 1 22 333 4444 1 2…

华为gre隧道全部跑静态路由

最终实现&#xff1a; 1、pc1能用nat上网ping能pc3 2、pc1能通过gre访问pc2 3、全部用静态路由做&#xff0c;没有用ospf&#xff0c;如果要用ospf&#xff0c;那么两边除了路由器上跑ospf&#xff0c;核心交换机也得用ospf r2配置&#xff1a; acl number 3000 rule 5 deny…

基于web的学生就业管理系统的设计与实现论文

摘 要 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统学生就业信息管理难度大&#xff0c;容错率低&#xff0c…

Java多线程技术五——单例模式与多线程-备份

1 概述 本章的知识点非常重要。在单例模式与多线程技术相结合的过程中&#xff0c;我们能发现很多以前从未考虑过的问题。这些不良的程序设计如果应用在商业项目中将会带来非常大的麻烦。本章的案例也充分说明&#xff0c;线程与某些技术相结合中&#xff0c;我们要考虑的事情会…

【ITK库学习】使用itk库进行图像配准:变换Transform(一)

目录 1、itkIdentityTransform 一致变换2、itkTranslationTransform 平移变换3、itkScaleTransform 比例变换4、itkRigid2DTransform 刚性2D变换5、itkCenteredRigid2DTransform 居中刚性2D变换6、itkEuler2DTransform 欧拉2D变换7、itkSimilarity2DTransform 2D相似度变换 1、…

如何使用 Matplotlib 绘制 3D 圣诞树

系列文章目录 前言 转自&#xff1a;How to draw a 3D Christmas Tree with Matplotlib | by Timur Bakibayev, Ph.D. | Analytics Vidhya | Mediumhttps://medium.com/analytics-vidhya/how-to-draw-a-3d-christmas-tree-with-matplotlib-aabb9bc27864 因为我们把圣诞树安装…

Linux操作系统——进程(四)进程切换与命令行参数

进程切换 概念引入 下面我们先了解几个概念&#xff1a; 竞争性: 系统进程数目众多&#xff0c;而CPU资源只有少量&#xff0c;甚至1个&#xff0c;所以进程之间是具有竞争属性的。为了高效完成任务&#xff0c;更合理竞争相关资源&#xff0c;便具有了优先级 独立性: 多进程…

阶段七-GitEE

Git&#xff1a;版本控制软件 Git的优点 1.1 协同修改 多人并行不悖的修改服务器端的同一个文件。 1.2 数据备份 不仅保存目录和文件的当前状态&#xff0c;还能够保存每一个提交过的历史状态。 1.3 版本管理 在保存每一个版本的文件信息的时候要做到不保存重复数据&…

【开源】基于JAVA的学校热点新闻推送系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 新闻类型模块2.2 新闻档案模块2.3 新闻留言模块2.4 新闻评论模块2.5 新闻收藏模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 新闻类型表3.2.2 新闻表3.2.3 新闻留言表3.2.4 新闻评论表3.2.5 新闻收藏表 四、系统展…

W5500-EVB-Pico评估版介绍

文章目录 1 概述2 板载资源2.1 硬件规格2.2 硬件规格2.3 工作条件 3 参考资料3.2 原理图3.3 尺寸图 (单位 : mm)3.4 参考例程 4 硬件协议栈优势 1 概述 W5500-EVB-Pico是基于树莓派RP2040和完全硬连线TCP/IP控制器W5500的微控制器开发板-基本上与树莓派Pico板相同&#xff0c;但…

深度学习(七):bert理解之输入形式

传统的预训练方法存在一些问题&#xff0c;如单向语言模型的局限性和无法处理双向上下文的限制。为了解决这些问题&#xff0c;一种新的预训练方法随即被提出&#xff0c;即BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;。通过在大规模…

Qt Creator可视化交互界面exe快速入门2

上一期介绍的通过代码的方式实现一个简单界面&#xff0c;需要敲小几十行代码&#xff0c;显然是效率低的&#xff0c;这期就介绍下Qt Creator的作用。 Qt Creator的使用&#xff1a; 首先打开我们的Qt Creator 然后点击创建项目&#xff0c;在项目Application里面选择Qt Wid…

嵌入式奇妙之旅:Python与树莓派编程深度探索

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 在这个数字化的时代&#xff0c;嵌入式系统的应…

Lua的垃圾回收机制详解

Lua 是一种轻量级的编程语言&#xff0c;广泛用于嵌入到其他应用程序中&#xff0c;尤其是在游戏开发领域。Lua 的内存管理机制采用了自动垃圾收集&#xff08;Garbage Collection&#xff09;的方法。以下是Lua内存管理的一些关键方面&#xff1a; 垃圾收集原理概述 Lua 使用…

matlab设置colorbar标题的两种方式

%% 第一种 figure; A rand(3,4,3); A1 A(:,:,1); A2 A(:,:,2); A3 A(:,:,3); contourf(A1,A2,A3,30); colormap(jet);colorbar; my_handlecolorbar; my_handle.Label.String depth/km; my_handle.Label.FontSize 15;%% 第二种 figure; A rand(3,4,3); A1 A(:,:,1); A2 …

c# OpenCvSharp透视矫正六步实现透视矫正(八)

透视矫正,引用文档拍照扫描&#xff0c;相片矫正这块。 读取图像Cv2.ImRead();预处理&#xff08;灰度化&#xff0c;高斯滤波、边缘检测&#xff09;轮廓检测&#xff08;获取到最大轮廓&#xff09;获取最大面积轮廓的四个顶点标识最小矩形坐标透视矫正显示 完整代码 // 1、…

【中小型企业网络实战案例 二】配置网络互连互通

​【中小型企业网络实战案例 一】规划、需求和基本配置-CSDN博客 热门IT技术视频教程&#xff1a;https://xmws-it.blog.csdn.net/article/details/134398330?spm1001.2014.3001.5502 配置接入层交换机 1.以接入交换机ACC1为例&#xff0c;创建ACC1的业务VLAN 10和20。 <…

异常和智能指针

智能指针的认识 智能指针是一种C语言中用于管理动态内存的工具&#xff0c;它们可以自动管理内存的分配和释放&#xff0c;从而避免内存泄漏和悬空指针等问题。智能指针可以跟踪指向的对象的引用次数&#xff0c;并在需要时自动释放被引用的内存&#xff0c;这极大地提高了内存…