跟着LearnOpenGL学习11--材质

文章目录

  • 一、材质
  • 二、设置材质
  • 三、光的属性
  • 四、不同的光源颜色

一、材质

在现实世界里,每个物体会对光产生不同的反应。

比如,钢制物体看起来通常会比陶土花瓶更闪闪发光,一个木头箱子也不会与一个钢制箱子反射同样程度的光。

有些物体反射光的时候不会有太多的散射(Scatter),因而产生较小的高光点,而有些物体则会散射很多,产生一个有着更大半径的高光点。

如果我们想要在OpenGL中模拟多种类型的物体,我们必须针对每种表面定义不同的材质(Material)属性。

在跟着LearnOpenGL学习10–基础光照这一篇中,我们定义了一个物体和光的颜色,并结合环境光与镜面强度分量,来决定物体的视觉输出。

当描述一个表面时,我们可以分别为三个光照分量定义一个材质颜色(Material Color):

  • 环境光照(Ambient Lighting)
  • 漫反射光照(Diffuse Lighting)
  • 镜面光照(Specular Lighting)

通过为每个分量指定一个颜色,我们就能够对表面的颜色输出有细粒度的控制了。

现在,我们再添加一个反光度(Shininess)分量,结合上述的三个颜色,我们就有了全部所需的材质属性了:

片段着色器

struct Material { //材质描述结构体vec3 ambient;       //环境光照vec3 diffuse;       //漫反射光照vec3 specular;      //镜面反射光照float shininess;    //反光度
};uniform Material material;  //材质

在片段着色器中,我们创建一个结构体(Struct)来储存物体的材质属性。
我们也可以把它们储存为独立的uniform值,但是作为一个结构体来储存会更有条理一些。
我们首先定义结构体的布局(Layout),然后简单地以刚创建的结构体作为类型声明一个uniform变量。

如你所见,我们为冯氏光照模型的每个分量都定义一个颜色向量:

  • ambient材质向量:定义了在环境光照下这个表面反射的是什么颜色,通常与表面的颜色相同。
  • diffuse材质向量:定义了在漫反射光照下表面的颜色。漫反射颜色(和环境光照一样)也被设置为我们期望的物体颜色。
  • specular材质向量:设置的是表面上镜面高光的颜色(或者甚至可能反映一个特定表面的颜色)。
  • shininess材质向量:影响镜面高光的散射/半径。

有这4个元素定义一个物体的材质,我们能够模拟很多现实世界中的材质。如下表格展示了一系列材质属性,它们模拟了现实世界中的真实材质。下图展示了几组现实世界的材质参数值对我们的立方体的影响:

材质表格

名字环境光照漫反射光照镜面反射光照反射强度
emerald(翡翠)0.0215, 0.1745, 0.02150.07568, 0.61424, 0.075680.633, 0.727811, 0.6330.6
jade(玉)0.135, 0.2225, 0.15750.54, 0.89, 0.630.316228, 0.316228, 0.3162280.1
obsidian(黑曜石)0.05375, 0.05, 0.066250.18275, 0.17, 0.225250.332741, 0.328634, 0.3464350.3
pearl(珍珠)0.25, 0.20725, 0.207251, 0.829, 0.8290.296648, 0.296648, 0.2966480.088
ruby(红宝石)0.1745, 0.01175, 0.011750.61424, 0.04136, 0.041360.727811, 0.626959, 0.6269590.6
turquoise()绿松石0.1, 0.18725, 0.17450.396, 0.74151, 0.691020.297254, 0.30829, 0.3066780.1
brass(黄铜)0.329412, 0.223529, 0.0274510.780392, 0.568627, 0.1137250.992157, 0.941176, 0.8078430.21794872
bronze(青铜)0.2125, 0.1275, 0.0540.714, 0.4284, 0.181440.393548, 0.271906, 0.1667210.2
chrome(铬)0.25, 0.25, 0.250.4, 0.4, 0.40.774597, 0.774597, 0.7745970.6
copper(铜)0.19125, 0.0735, 0.02250.7038, 0.27048, 0.08280.256777, 0.137622, 0.0860140.1
gold(黄金)0.24725, 0.1995, 0.07450.75164, 0.60648,0.226480.628281, 0.555802, 0.3660650.4
silver(银)0.19225, 0.19225, 0.192250.50754, 0.50754, 0.507540.508273, 0.508273, 0.5082730.4
black plastic(黑色塑料)0.0, 0.0, 0.00.01, 0.01, 0.010.50, 0.50, 0.500.25
cyan plastic(青色塑料)0.0, 0.1, 0.060.0, 0.50980392, 0.509803920.50196078, 0.50196078, 0.501960780.25
green plastic(绿色塑料)0.0, 0.0, 0.00.1, 0.35, 0.10.45, 0.55, 0.450.25
red plastic(红色塑料)0.0, 0.0, 0.00.5, 0.0, 0.00.7, 0.6, 0.60.25
white plastic(白色塑料)0.0, 0.0, 0.00.55, 0.55, 0.550.70, 0.70, 0.700.25
yellow plastic(黄色塑料)0.0, 0.0, 0.00.5, 0.5, 0.00.60, 0.60, 0.500.25
black rubber(黑色橡胶)0.02, 0.02, 0.020.01, 0.01, 0.010.4, 0.4, 0.40.78125
cyan rubber(青色橡胶)0.0, 0.05, 0.050.4, 0.5, 0.50.04, 0.7, 0.70.78125
green rubber(绿色橡胶)0.0, 0.05, 0.00.4, 0.5, 0.40.04, 0.7, 0.040.78125
red rubber(红色橡胶)0.05, 0.0, 0.00.5, 0.4, 0.40.7, 0.04, 0.040.78125
white rubber(白色橡胶)0.05, 0.05, 0.050.5, 0.5, 0.50.7, 0.7, 0.70.78125
yellow rubber(黄色橡胶)0.05, 0.05, 0.00.5, 0.5, 0.40.7, 0.7, 0.040.78125

在这里插入图片描述
可以看到,通过正确地指定一个物体的材质属性,我们对这个物体的感知也就不同了。效果非常明显,但是要想获得更真实的效果,我们需要以更复杂的形状替换这个立方体。

搞清楚一个物体正确的材质设定是个困难的工程,这主要需要实验和丰富的经验。用了不合适的材质而毁了物体的视觉质量是件经常发生的事。

让我们试着在着色器中实现这样的一个材质系统。


二、设置材质

我们在片段着色器中创建了一个材质结构体的uniform,所以下面我们希望修改一下光照的计算来遵从新的材质属性。由于所有材质变量都储存在一个结构体中,我们可以从uniform变量material中访问它们:

片段着色器

#version 330 corein vec3 FragPos;
in vec3 Normal;out vec4 FragColor;uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;   //观察者坐标struct Material { //材质描述结构体vec3 ambient;       //环境光照vec3 diffuse;       //漫反射光照vec3 specular;      //镜面反射光照float shininess;    //反光度
};uniform Material material;  //材质void main()
{//环境光照vec3 ambient = material.ambient * lightColor;//漫反射光照vec3 norm = normalize(Normal);vec3 lightDir = normalize(lightColor - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = (diff *material.diffuse) * lightColor;//镜面反射光照vec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = (material.specular * spec) * lightColor;vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
}

可以看到,我们现在在需要的地方访问了材质结构体中的所有属性,并且这次是根据材质的颜色来计算最终的输出颜色的。物体的每个材质属性都乘上了它们各自对应的光照分量。

我们现在可以通过设置适当的uniform来设置应用中物体的材质了。GLSL中一个结构体在设置uniform时并无任何区别,结构体只是充当uniform变量们的一个命名空间。所以如果想填充这个结构体的话,我们必须设置每个单独的uniform,但要以结构体名为前缀:

lightingShader.setVec3("material.ambient",  1.0f, 0.5f, 0.31f);
lightingShader.setVec3("material.diffuse",  1.0f, 0.5f, 0.31f);
lightingShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);
lightingShader.setFloat("material.shininess", 32.0f);

我们将环境光和漫反射分量设置成我们想要让物体所拥有的颜色,而将镜面分量设置为一个中等亮度的颜色,我们不希望镜面分量过于强烈。我们仍将反光度保持为32。

现在我们能够轻松地在应用中影响物体的材质了。运行程序,你会得到像这样的结果:
在这里插入图片描述


全部代码

main.cpp

#include "mainwindow.h"
#include <QApplication>//在包含GLFW的头文件之前包含了GLAD的头文件;
//GLAD的头文件包含了正确的OpenGL头文件(例如GL/gl.h);
//所以需要在其它依赖于OpenGL的头文件之前包含GLAD;
#include <glad/glad.h>
#include <GLFW/glfw3.h>//GLM
//#include <glm/glm.hpp>
//#include <glm/gtc/matrix_transform.hpp>
//#include <glm/gtc/type_ptr.hpp>#include <iostream>
#include <QDebug>#include "shader.h"
#include "stb_image.h"
#include "camera.h"void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);// settings
const unsigned int SCR_WIDTH = 1920;
const unsigned int SCR_HEIGHT = 1080;//Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX =  SCR_WIDTH / 2.0;
float lastY =  SCR_HEIGHT / 2.0;
bool firstMouse = true;float deltaTime = 0.0f; // 当前帧与上一帧的时间差
float lastFrame = 0.0f; // 上一帧的时间//Light
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);using namespace std;int main(int argc, char *argv[])
{QApplication a(argc, argv);//MainWindow w;//w.show();//初始化GLFW//--------------------glfwInit();//配置GLFW//--------------------//告诉GLFW使用的OpenGL本是3.3glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//告诉GLFW使用的是核心模式(Core-profile)glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//创建一个新的OpenGL环境和窗口//-----------------------------------GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);if (window == NULL){std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();    //glfw销毁窗口和OpenGL环境,并释放资源return -1;}//设置参数window中的窗口所关联的OpenGL环境为当前环境//-----------------------------------glfwMakeContextCurrent(window);//设置窗口尺寸改变大小时的回调函数(窗口尺寸发送改变时会自动调用)//-----------------------------------glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);//设置鼠标事件的回调函数(鼠标移动时会自动调用)//-----------------------------------glfwSetCursorPosCallback(window, mouse_callback);//设置鼠标滚轮事件的回调函数(鼠标滚轮移动时会自动调用)//-----------------------------------glfwSetScrollCallback(window, scroll_callback);//告诉GLFW捕捉鼠标glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);//glad加载系统相关的OpenGL函数指针//---------------------------------------if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}//开启深度测试glEnable(GL_DEPTH_TEST);Shader objectShader("C:/Qt_Pro/OpenGL_GLFW/shader/shader.vs","C:/Qt_Pro/OpenGL_GLFW/shader/shader.fs");Shader lightShader("C:/Qt_Pro/OpenGL_GLFW/shader/light_cube.vs","C:/Qt_Pro/OpenGL_GLFW/shader/light_cube.fs");//顶点数据//---------------------------------------------------------------------float vertices[] = {//顶点数据             //顶点法向量-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f};//物体//----------------------------------------------------------------unsigned int VBO, objectVAO;glGenVertexArrays(1, &objectVAO);     //创建顶点数组对象glGenBuffers(1, &VBO);          //创建顶点缓冲对象glBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);  //将顶点数据复制到GL_ARRAY_BUFFER缓冲区,之后可通过VBO进行操作glBindVertexArray(objectVAO);         //绑定VAO//设定顶点属性指针//位置属性glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//法向量属性glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));glEnableVertexAttribArray(1);//光源(VBO用上面的)//----------------------------------------------------------------unsigned int lightVAO;glGenVertexArrays(1, &lightVAO);     //创建顶点数组对象glBindVertexArray(lightVAO);         //绑定VAOglBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//渲染循环//我们可不希望只绘制一个图像之后我们的应用程序就立即退出并关闭窗口;//我们希望程序在我们主动关闭它之前不断绘制图像并能够接受用户输入;//因此,我们需要在程序中添加一个while循环,它能在我们让GLFW退出前一直保持运行;//------------------------------------------------------------------------------while (!glfwWindowShouldClose(window))  //如果用户准备关闭参数window所指定的窗口,那么此接口将会返回GL_TRUE,否则将会返回GL_FALSE{//更新时间差float currentFrame = static_cast<float>(glfwGetTime());deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;//用户输入//------------------------------------------------------------------------------processInput(window);   //检测是否有输入//渲染指令//------------------------------------------------------------------------------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//被投光物体//============================================================//激活着色器程序对象objectShader.use();objectShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);objectShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);objectShader.setVec3("lightPos", lightPos);objectShader.setVec3("viewPos", camera.Position);objectShader.setVec3("material.ambient",  1.0f, 0.5f, 0.31f);objectShader.setVec3("material.diffuse",  1.0f, 0.5f, 0.31f);objectShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);objectShader.setFloat("material.shininess", 32.0f);//创建变换矩阵glm::mat4 model = glm::mat4(1.0f);objectShader.setMat4("model", model);glm::mat4 view = camera.GetViewMatrix();objectShader.setMat4("view", view);glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);objectShader.setMat4("projection", projection);//绘制三角形glBindVertexArray(objectVAO);             //绑定VAOglDrawArrays(GL_TRIANGLES, 0, 36);//============================================================//光源//============================================================//激活着色器程序对象lightShader.use();lightShader.setMat4("view", view);lightShader.setMat4("projection", projection);model = glm::mat4(1.0f);model = glm::translate(model, lightPos);model = glm::scale(model, glm::vec3(0.2f));lightShader.setMat4("model", model);//绘制三角形glBindVertexArray(lightVAO);             //绑定VAOglDrawArrays(GL_TRIANGLES, 0, 36);//============================================================//告诉GLFW检查所有等待处理的事件和消息,包括操作系统和窗口系统中应当处理的消息。如果有消息正在等待,它会先处理这些消息再返回;否则该函数会立即返回//---------------------------------------------------------------------------------------------------------------------------------glfwPollEvents();//请求窗口系统将参数window关联的后缓存画面呈现给用户(双缓冲绘图)//------------------------------------------------------------------------------glfwSwapBuffers(window);}//释放资源glDeleteVertexArrays(1, &objectVAO);glDeleteVertexArrays(1, &lightVAO);glDeleteBuffers(1, &VBO);//glDeleteProgram(objectShader);//glDeleteProgram(lightShader);//glfw销毁窗口和OpenGL环境,并释放资源(之后必须再次调用glfwInit()才能使用大多数GLFW函数)//------------------------------------------------------------------glfwTerminate();return a.exec();
}//检测是否有输入
//---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)   //ESC键,退出glfwSetWindowShouldClose(window, true);float cameraSpeed = static_cast<float>(2.5 * deltaTime);if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)camera.ProcessKeyboard(FORWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)camera.ProcessKeyboard(BACKWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)camera.ProcessKeyboard(LEFT, deltaTime);if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)camera.ProcessKeyboard(RIGHT, deltaTime);
}//给glfw窗口注册的尺寸改变回调函数
//---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{//确保视口匹配新的窗口尺寸,请注意:宽度和高度将比视网膜显示器上指定的大得多glViewport(0, 0, width, height);
}
// 鼠标移动时的回调函数
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{float xpos = static_cast<float>(xposIn);float ypos = static_cast<float>(yposIn);if (firstMouse){lastX = xpos;lastY = ypos;firstMouse = false;}float xoffset = lastX - xpos;float yoffset = ypos - lastY;   //翻转,因为Y轴是从下到上越来越大lastX = xpos;lastY = ypos;camera.ProcessMouseMovement(xoffset, yoffset);
}//鼠标滚轮的回调函数
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

三、光的属性

不过看起来真的不太对劲?这个物体太亮了。

物体过亮的原因是环境光、漫反射和镜面光这三个颜色对任何一个光源都全力反射。

光源对环境光、漫反射和镜面光分量也分别具有不同的强度。前面的章节中,我们通过使用一个强度值改变环境光和镜面光强度的方式解决了这个问题。我们想做类似的事情,但是这次是要为每个光照分量分别指定一个强度向量。

如果我们假设lightColor是vec3(1.0),代码会看起来像这样:

vec3 ambient  = vec3(1.0) * material.ambient;
vec3 diffuse  = vec3(1.0) * (diff * material.diffuse);
vec3 specular = vec3(1.0) * (spec * material.specular);

所以物体的每个材质属性对每一个光照分量都返回了最大的强度。

对单个光源来说,这些vec3(1.0)值同样可以对每种光源分别改变,而这通常就是我们想要的。

现在,物体的环境光分量完全地影响了立方体的颜色,可是环境光分量实际上不应该对最终的颜色有这么大的影响,所以我们会将光源的环境光强度设置为一个小一点的值,从而限制环境光颜色:

vec3 ambient = vec3(0.1) * material.ambient;

我们可以用同样的方式影响光源的漫反射和镜面光强度。这和我们在上一节中所做的极为相似,你可以认为我们已经创建了一些光照属性来影响各个光照分量。我们希望为光照属性创建类似材质结构体的东西:

struct Light {vec3 position;vec3 ambient;vec3 diffuse;vec3 specular;
};uniform Light light;
  • 一个光源对它的ambientdiffusespecular光照分量有着不同的强度。
  • 环境光照通常被设置为一个比较低的强度,因为我们不希望环境光颜色太过主导。
  • 光源的漫反射分量通常被设置为我们希望光所具有的那个颜色,通常是一个比较明亮的白色。
  • 镜面光分量通常会保持为vec3(1.0),以最大强度发光。
  • 注意:我们也将光源的位置向量加入了结构体。

和材质uniform一样,我们需要更新片段着色器:

片段着色器

#version 330 corein vec3 FragPos;
in vec3 Normal;out vec4 FragColor;uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;   //观察者坐标struct Material { //材质描述结构体vec3 ambient;       //环境光照vec3 diffuse;       //漫反射光照vec3 specular;      //镜面反射光照float shininess;    //反光度
};
uniform Material material;  //材质struct Light {  //光照强度vec3 position;vec3 ambient;vec3 diffuse;vec3 specular;
};
uniform Light light;void main()
{//环境光照vec3 ambient = material.ambient * light.ambient;//漫反射光照vec3 norm = normalize(Normal);vec3 lightDir = normalize(lightColor - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = (diff *material.diffuse) * light.diffuse;//镜面反射光照vec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = (material.specular * spec) * light.specular;vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
}

我们接下来在应用中设置光照强度:

objectShader.setVec3("light.ambient",  0.2f, 0.2f, 0.2f);
objectShader.setVec3("light.diffuse",  0.5f, 0.5f, 0.5f); // 将光照调暗了一些以搭配场景
objectShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);

现在我们已经调整了光照对物体材质的影响,我们得到了一个与上一节很相似的视觉效果。但这次我们有了对光照和物体材质的完全掌控:

在这里插入图片描述
在这里插入图片描述


四、不同的光源颜色

到目前为止,我们都只对光源设置了从白到灰到黑范围内的颜色,这样只会改变物体各个分量的强度,而不是它的真正颜色。

由于现在能够非常容易地访问光照的属性了,我们可以随着时间改变它们的颜色,从而获得一些非常有意思的效果。

由于所有的东西都在片段着色器中配置好了,修改光源的颜色非常简单,并立刻创造一些很有趣的效果:

//光照强度
glm::vec3 lightColor;
lightColor.x = static_cast<float>(sin(glfwGetTime() * 2.0));
lightColor.y = static_cast<float>(sin(glfwGetTime() * 0.7));
lightColor.z = static_cast<float>(sin(glfwGetTime() * 1.3));
glm::vec3 diffuseColor = lightColor   * glm::vec3(0.5f); // decrease the influence
glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f); // low influence
objectShader.setVec3("light.ambient", ambientColor);
objectShader.setVec3("light.diffuse", diffuseColor);
objectShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);

你可以看到,不同的光照颜色能够极大地影响物体的最终颜色输出。由于光照颜色能够直接影响物体能够反射的颜色,这对视觉输出有着显著的影响。

在这里插入图片描述

全部代码

#include "mainwindow.h"
#include <QApplication>//在包含GLFW的头文件之前包含了GLAD的头文件;
//GLAD的头文件包含了正确的OpenGL头文件(例如GL/gl.h);
//所以需要在其它依赖于OpenGL的头文件之前包含GLAD;
#include <glad/glad.h>
#include <GLFW/glfw3.h>//GLM
//#include <glm/glm.hpp>
//#include <glm/gtc/matrix_transform.hpp>
//#include <glm/gtc/type_ptr.hpp>#include <iostream>
#include <QDebug>#include "shader.h"
#include "stb_image.h"
#include "camera.h"void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);// settings
const unsigned int SCR_WIDTH = 1920;
const unsigned int SCR_HEIGHT = 1080;//Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX =  SCR_WIDTH / 2.0;
float lastY =  SCR_HEIGHT / 2.0;
bool firstMouse = true;float deltaTime = 0.0f; // 当前帧与上一帧的时间差
float lastFrame = 0.0f; // 上一帧的时间//Light
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);using namespace std;int main(int argc, char *argv[])
{QApplication a(argc, argv);//MainWindow w;//w.show();//初始化GLFW//--------------------glfwInit();//配置GLFW//--------------------//告诉GLFW使用的OpenGL本是3.3glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//告诉GLFW使用的是核心模式(Core-profile)glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//创建一个新的OpenGL环境和窗口//-----------------------------------GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);if (window == NULL){std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();    //glfw销毁窗口和OpenGL环境,并释放资源return -1;}//设置参数window中的窗口所关联的OpenGL环境为当前环境//-----------------------------------glfwMakeContextCurrent(window);//设置窗口尺寸改变大小时的回调函数(窗口尺寸发送改变时会自动调用)//-----------------------------------glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);//设置鼠标事件的回调函数(鼠标移动时会自动调用)//-----------------------------------glfwSetCursorPosCallback(window, mouse_callback);//设置鼠标滚轮事件的回调函数(鼠标滚轮移动时会自动调用)//-----------------------------------glfwSetScrollCallback(window, scroll_callback);//告诉GLFW捕捉鼠标glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);//glad加载系统相关的OpenGL函数指针//---------------------------------------if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}//开启深度测试glEnable(GL_DEPTH_TEST);Shader objectShader("C:/Qt_Pro/OpenGL_GLFW/shader/shader.vs","C:/Qt_Pro/OpenGL_GLFW/shader/shader.fs");Shader lightShader("C:/Qt_Pro/OpenGL_GLFW/shader/light_cube.vs","C:/Qt_Pro/OpenGL_GLFW/shader/light_cube.fs");//顶点数据//---------------------------------------------------------------------float vertices[] = {//顶点数据             //顶点法向量-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f};//物体//----------------------------------------------------------------unsigned int VBO, objectVAO;glGenVertexArrays(1, &objectVAO);     //创建顶点数组对象glGenBuffers(1, &VBO);          //创建顶点缓冲对象glBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);  //将顶点数据复制到GL_ARRAY_BUFFER缓冲区,之后可通过VBO进行操作glBindVertexArray(objectVAO);         //绑定VAO//设定顶点属性指针//位置属性glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//法向量属性glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));glEnableVertexAttribArray(1);//光源(VBO用上面的)//----------------------------------------------------------------unsigned int lightVAO;glGenVertexArrays(1, &lightVAO);     //创建顶点数组对象glBindVertexArray(lightVAO);         //绑定VAOglBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//渲染循环//我们可不希望只绘制一个图像之后我们的应用程序就立即退出并关闭窗口;//我们希望程序在我们主动关闭它之前不断绘制图像并能够接受用户输入;//因此,我们需要在程序中添加一个while循环,它能在我们让GLFW退出前一直保持运行;//------------------------------------------------------------------------------while (!glfwWindowShouldClose(window))  //如果用户准备关闭参数window所指定的窗口,那么此接口将会返回GL_TRUE,否则将会返回GL_FALSE{//更新时间差float currentFrame = static_cast<float>(glfwGetTime());deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;//用户输入//------------------------------------------------------------------------------processInput(window);   //检测是否有输入//渲染指令//------------------------------------------------------------------------------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//被投光物体//============================================================//激活着色器程序对象objectShader.use();objectShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);objectShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);objectShader.setVec3("lightPos", lightPos);objectShader.setVec3("viewPos", camera.Position);//光照强度glm::vec3 lightColor;lightColor.x = static_cast<float>(sin(glfwGetTime() * 2.0));lightColor.y = static_cast<float>(sin(glfwGetTime() * 0.7));lightColor.z = static_cast<float>(sin(glfwGetTime() * 1.3));glm::vec3 diffuseColor = lightColor   * glm::vec3(0.5f); // decrease the influenceglm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f); // low influenceobjectShader.setVec3("light.ambient", ambientColor);objectShader.setVec3("light.diffuse", diffuseColor);objectShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);//材质objectShader.setVec3("material.ambient",  1.0f, 0.5f, 0.31f);objectShader.setVec3("material.diffuse",  1.0f, 0.5f, 0.31f);objectShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);objectShader.setFloat("material.shininess", 32.0f);//创建变换矩阵glm::mat4 model = glm::mat4(1.0f);objectShader.setMat4("model", model);glm::mat4 view = camera.GetViewMatrix();objectShader.setMat4("view", view);glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);objectShader.setMat4("projection", projection);//绘制三角形glBindVertexArray(objectVAO);             //绑定VAOglDrawArrays(GL_TRIANGLES, 0, 36);//============================================================//光源//============================================================//激活着色器程序对象lightShader.use();lightShader.setMat4("view", view);lightShader.setMat4("projection", projection);model = glm::mat4(1.0f);model = glm::translate(model, lightPos);model = glm::scale(model, glm::vec3(0.2f));lightShader.setMat4("model", model);//绘制三角形glBindVertexArray(lightVAO);             //绑定VAOglDrawArrays(GL_TRIANGLES, 0, 36);//============================================================//告诉GLFW检查所有等待处理的事件和消息,包括操作系统和窗口系统中应当处理的消息。如果有消息正在等待,它会先处理这些消息再返回;否则该函数会立即返回//---------------------------------------------------------------------------------------------------------------------------------glfwPollEvents();//请求窗口系统将参数window关联的后缓存画面呈现给用户(双缓冲绘图)//------------------------------------------------------------------------------glfwSwapBuffers(window);}//释放资源glDeleteVertexArrays(1, &objectVAO);glDeleteVertexArrays(1, &lightVAO);glDeleteBuffers(1, &VBO);//glDeleteProgram(objectShader);//glDeleteProgram(lightShader);//glfw销毁窗口和OpenGL环境,并释放资源(之后必须再次调用glfwInit()才能使用大多数GLFW函数)//------------------------------------------------------------------glfwTerminate();return a.exec();
}//检测是否有输入
//---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)   //ESC键,退出glfwSetWindowShouldClose(window, true);float cameraSpeed = static_cast<float>(2.5 * deltaTime);if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)camera.ProcessKeyboard(FORWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)camera.ProcessKeyboard(BACKWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)camera.ProcessKeyboard(LEFT, deltaTime);if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)camera.ProcessKeyboard(RIGHT, deltaTime);
}//给glfw窗口注册的尺寸改变回调函数
//---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{//确保视口匹配新的窗口尺寸,请注意:宽度和高度将比视网膜显示器上指定的大得多glViewport(0, 0, width, height);
}
// 鼠标移动时的回调函数
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{float xpos = static_cast<float>(xposIn);float ypos = static_cast<float>(yposIn);if (firstMouse){lastX = xpos;lastY = ypos;firstMouse = false;}float xoffset = lastX - xpos;float yoffset = ypos - lastY;   //翻转,因为Y轴是从下到上越来越大lastX = xpos;lastY = ypos;camera.ProcessMouseMovement(xoffset, yoffset);
}//鼠标滚轮的回调函数
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225136.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Clion配置Qt开发过程中的很多坑

如果你想使用Clion开发Qt软件 如果你想在Windows上使用Clion开发Qt 如果你还想使用MSVC编译器开发Qt 但是却遇到了各种各种编译报错&#xff0c;那么恭喜你这些坑都有人帮你踩过了 报错一 CMake Error at CMakeLists.txt:25 (find_package):Could not find a package config…

冒泡排序(C语言)

void BubbleSort(int arr[], int len) {int i, j, temp;for (i 0; i < len; i){for (j len - 1; j > i; j--){if (arr[j] > arr[j 1]){temp arr[j];arr[j] arr[j 1];arr[j 1] temp;}}} } 优化&#xff1a; 设置标志位flag&#xff0c;如果发生了交换flag设置…

西南科技大学计算机网络实验二 (IP协议分析与以太网协议分析)

一、实验目的 通过分析由跟踪执行traceroute程序发送和接收捕获得到的IP 数据报,深入研究在IP 数据报中的各种字段,理解IP协议。基于ARP命令和Ethereal进行以太网帧捕获与分析,理解和熟悉ARP协议原理以及以太网帧格式。 二、实验环境 与因特网连接的计算机网络系统;主机操…

ES-mapping

类似数据库中的表结构定义&#xff0c;主要作用如下 定义Index下的字段名( Field Name) 定义字段的类型&#xff0c;比如数值型、字符串型、布尔型等定义倒排索引相关的配置&#xff0c;比如是否索引、记录 position 等 index_options 用于控制倒排索记录的内容&#xff0c;有如…

敏捷开发 - 知识普及

敏捷开发- Scrum 前言 知乎有一篇文章描写Scrum,我觉得比较好:https://zhuanlan.zhihu.com/p/631459977 简单科普下PM和PMO 原文来源:https://zhuanlan.zhihu.com/p/546820914 PM - 项目经理(Project Manager) ​ 需要具备以下能力 ​ 1.号召力 2.影响力 3.交流能力 4.应…

MySQL 导入数据报错MySQL server has gone away

SQL语句太大了 稍微难以测试和验证&#xff0c;但是MySQL使用最大数据包站站点进行服务器和客户端之间的通信。如果语句包含大字段&#xff0c;则可能由于SQL语句的大小&#xff0c;而被中止。 我们可以通过语句查看一下允许的最大包大小&#xff1a;show global variables lik…

k8s---kubernets

目录 一、Kurbernetes 1.2、K8S的特性&#xff1a; 1.3、docker和K8S&#xff1a; 1.4、K8S的作用&#xff1a; 1.5、K8S的特性&#xff1a; 二、K8S集群架构与组件&#xff1a; 三、K8S的核心组件&#xff1a; 一、master组件&#xff1a; 1、kube-apiserver&#xff1…

蓝桥杯的学习规划

c语言基础&#xff1a; Python语言基础 学习路径&#xff1a;画框的要着重学习

音频修复增强软件iZotope RX 10 mac特点介绍

iZotope RX 10 mac是一款音频修复和增强软件。 iZotope RX 10 mac软件特点 声音修复&#xff1a;iZotope RX 10可以去除不良噪音、杂音、吱吱声等&#xff0c;使音频变得更加清晰干净。 音频增强&#xff1a;iZotope RX 10支持对音频进行音量调节、均衡器、压缩器、限制器等处…

网络安全保障领域

计算机与信息系统安全---最主要领域 云计算安全 IaaS、PasS、SaaS(裸机&#xff0c;装好软件的电脑&#xff0c;装好应用的电脑) 存在风险&#xff1a;开源工具、优先访问权、管理权限、数据处、数据隔离、数据恢复、调查支持、长期发展风险 云计算安全关键技术&#xff1a;可信…

【C++逆向 - 1】C++函数新特性

内联函数 本质&#xff1a;用函数代码替换函数调用 使用方式&#xff1a;在函数声明和函数定义前加上 inline 关键字 笔者感觉跟C语言中的宏定义差不多&#xff0c;但是内联函数更加“智能”&#xff08;应该是编译器更加智能&#xff09;。即使程序员将函数作为内联函数&am…

华为数通方向HCIP-DataCom H12-831题库(多选题:221-240)

第221题 在割接项目的项目调研阶段需要对现网硬件环境进行观察,主要包括以下哪些内容? A、设备的位置 B、ODF位置 C、接口标识 D、光纤接口对应关系 答案:ABCD 解析: 在项目割接前提的项目调研阶段,需要记录下尽可能详细的信息。 第222题 以下哪些项能被正则表达式10*成…

Python 新规范 pyproject.toml 完全解析

多谢&#xff1a;thank Python从PEP 518开始引入的使用pyproject.toml管理项目元数据的方案。 该规范目前已经在很多开源项目中得以支持&#xff1a; Django 这个 Python 生态的顶级项目在 5 个月之前开始使用 pyproject.tomlPytest 这个 Python 生态测试框架的领头羊在 4 个…

智慧幼儿园视频监管方案及实施建议:AI智能技术构建新引擎

一、背景需求 随着科技的快速发展&#xff0c;智慧化监管已成为幼儿园管理的重要趋势。智慧幼儿园监管解决方案通过引入先进的技术手段&#xff0c;提高幼儿园的管理效率&#xff0c;保障幼儿的安全与健康&#xff0c;为家长提供更便捷的服务。为了保障幼儿的安全&#xff0c;…

【通讯录案例-搭建登录界面 Objective-C语言】

一、来看我们这个通讯录案例 1.接下来啊,我们来做这个通讯录案例, 然后呢,做这么一个应用程序啊, 我们第一步呢,先把界面儿搭了, 然后呢,搭之前,简单的来分析一下, 首先呢,这是,中间儿的这一块儿, 1)有个“账户”、“密码”,这一块儿, 这是一个什么控制器,…

OpenCV与YOLO学习与研究指南

引言 OpenCV是一个开源的计算机视觉和机器学习软件库&#xff0c;而YOLO&#xff08;You Only Look Once&#xff09;是一个流行的实时对象检测系统。对于大学生和初学者而言&#xff0c;掌握这两项技术将大大提升他们在图像处理和机器视觉领域的能力。 基础知识储备 在深入…

路由器介绍和命令操作

先来回顾一下上次的内容&#xff1a; ip地址就是由32位二进制数组 二进位数就是只有数字0和1组成 网络位&#xff1a;类似于区号&#xff0c;表示区域作用 主机位&#xff1a;类似于号码&#xff0c;表示区域中编号 网络名称&#xff1a;网络位不变&#xff0c;主机位全为0 …

OpenGL :LearnOpenGL笔记

glfw https://github.com/JoeyDeVries/LearnOpenGL/blob/master/src/1.getting_started/1.1.hello_window/hello_window.cpp #include <glad/glad.h>// 注: GLAD的include文件包含所需的OpenGL头文件(如GL/GL.h) &#xff0c;因此确保在其他需要OpenGL的头文件 (如GLFW…

Java设计模式-适配器模式

目录 一、生活中的适配器例子 二、基本介绍 三、工作原理 四、类适配器模式 &#xff08;一&#xff09;类适配器模式介绍 &#xff08;二&#xff09;应用实例 &#xff08;三&#xff09;类适配器模式注意事项和细节 五、对象适配器模式 &#xff08;一&#xff09…

12.26_黑马数据结构与算法笔记Java

目录 243 图 Floyd Warshall 算法实现2 244 图 Floyd Warshall 算法实现3 245 图 Floyd Warshall 算法实现4 246 图 最小生成树 Prim 247 图 最小生成树 Kruskal 248 图 并查集 1 249 图 并查集 2 250 图 并查集 路径压缩 251 图 并查集 UnionBySize 252 贪心算法 介绍…