Yolov5水果分类识别+pyqt交互式界面

Yolov5 Fruits Detector

  • Yolov5 是一种先进的目标检测算法,可以应用于水果分类识别任务。结合 PyQT
    框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT
    交互式界面的实现。
  • Yolov5 是由 Ultralytics
    公司开发的一种基于深度学习的目标检测算法,它采用了一种称为单阶段目标检测的方法,具有高准确率和实时性的特点。在水果分类识别任务中,Yolov5
    可以检测图像中的水果,并将其分类为不同的类别,例如苹果、香蕉、橙子等。
  • 为了实现 Yolov5 水果分类识别的交互式界面,可以使用 PyQT 框架进行开发。PyQT 是一个功能强大且易于使用的 Python
    GUI 开发工具包,它提供了丰富的界面组件和布局选项,可以轻松创建用户友好的界面。
  • 在界面设计方面,可以使用 PyQT 创建一个包含上传图片按钮和显示分类结果的窗口。当用户点击上传图片按钮时,可以调用 Yolov5
    模型对上传的图片进行识别,并将分类结果显示在界面上。同时,还可以添加其他功能,如清除界面、保存结果等。

image56

要求

  • 可以使用 Linux 或者 Windows。我们推荐使用 Linux 以获得更好的性能。
  • 需要安装 Python 3.6+ 和 PyTorch 1.7+。

安装

运行以下命令来安装依赖项:

pip install -r requirements.txt
  • 下载模型,请使用此链接:https://drive.google.com/file/d/1W6qZeutnqnp3YX9w4iYgR44xsoi_64ff/view?usp=sharing
  • 将下载的文件放置在 weights 目录下

代码

运行此部分检测ui界面代码

import sys
import osfrom PySide6.QtWidgets import QApplication, QWidget, QFileDialog
from PySide6.QtCore import QFile
from PySide6.QtUiTools import QUiLoader
from PySide6.QtGui import QPixmap, QImage
from PySide6.QtCore import QThread, Signal, QDir
import cv2def convertCVImage2QtImage(cv_img):cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)height, width, channel = cv_img.shapebytesPerLine = 3 * widthqimg = QImage(cv_img.data, width, height, bytesPerLine, QImage.Format_RGB888)return QPixmap.fromImage(qimg)class ProcessImage(QThread):signal_show_frame = Signal(object)def __init__(self, fileName):QThread.__init__(self)self.fileName = fileNamefrom detector import Detectorself.detector = Detector()def run(self):self.video = cv2.VideoCapture(self.fileName)while True:valid, self.frame = self.video.read()if valid is not True:breakself.frame = self.detector.detect(self.frame)self.signal_show_frame.emit(self.frame)cv2.waitKey(30)self.video.release()def stop(self):try:self.video.release()except:passclass show(QThread):signal_show_image = Signal(object)def __init__(self, fileName):QThread.__init__(self)self.fileName = fileNameself.video=cv2.VideoCapture(self.fileName)def run(self): while True:valid, self.frame = self.video.read()if valid is not True:breakself.signal_show_image.emit(self.frame)cv2.waitKey(30)self.video.release()def stop(self):try:self.video.release()except:passclass MainWindow(QWidget):def __init__(self):super(MainWindow, self).__init__()loader = QUiLoader()self.ui = loader.load("ui/form.ui")self.ui.btn_browse.clicked.connect(self.getFile)self.ui.btn_start.clicked.connect(self.predict)self.ui.show()def getFile(self):self.fileName = QFileDialog.getOpenFileName(self,'Single File','C:\'','*.jpg *.mp4 *.jpeg *.png *.avi')[0]self.ui.txt_address.setText(str(self.fileName))self.show=show(self.fileName)self.show.signal_show_image.connect(self.show_input)self.show.start()def predict(self):self.process_image = ProcessImage(self.fileName)self.process_image.signal_show_frame.connect(self.show_output)self.process_image.start()def show_input(self, image):pixmap = convertCVImage2QtImage(image)self.ui.lbl_input.setPixmap(pixmap)def show_output(self, image):pixmap = convertCVImage2QtImage(image)self.ui.lbl_output.setPixmap(pixmap)if __name__ == "__main__":app = QApplication(sys.argv)widget = MainWindow()sys.exit(app.exec())

运行界面

要对图像或视频进行推断,请运行以下命令:

python main.py 

数据集:

  • 数据集可以在此链接中找到https://t.ly/NZWj
  • 在 Yolov5 水果分类识别的实现过程中,需要使用训练好的 Yolov5 模型来进行目标检测和分类。可以使用已经预训练好的 Yolov5 模型,也可以自己训练一个适用于水果分类的模型。

总结

总结起来,Yolov5 水果分类识别结合 PyQT 交互式界面可以提供一个方便用户上传图片并获取水果分类结果的工具。Yolov5 算法具有高准确率和实时性,在水果分类任务中表现出色。PyQT 框架提供了丰富的界面组件和布局选项,使得界面开发更加简单。通过 Yolov5 水果分类识别和 PyQT 交互式界面的结合,用户可以轻松地进行水果分类识别,并获得准确的分类结果。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225198.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C/C++常见面试题(四)

C/C面试题集合四 目录 1、什么是C中的类?如何定义和实例化一个类? 2、请解释C中的继承和多态性。 3、什么是虚函数?为什么在基类中使用虚函数? 4、解释封装、继承和多态的概念,并提供相应的代码示例 5、如何处理内…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台,支持和延伸M365, Dynamics 365和Azure甚至其他第三方服务。主要提供低代码,自动化,数据驱动和定制化业务逻辑的服务…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

65内网安全-域环境工作组局域网探针

这篇分为三个部分,基本认知,信息收集,后续探针, 基本认知 分为,名词,域,认知; 完整架构图 名词 dwz称之为军事区,两个防火墙之间的区域称之为dwz,但安全性…

STM32逆变器方案

输入电压: 额定输入电压:DC110V 输入电压范围:DC77-137.5V 额定输出参数 电压:200V5%(200VAC~240VAC 可调) 频率: 42Hz0.5Hz(35-50 可调) 额定输出容量:1…

mvtec3d

以bagel为例,其中有calibration、 bagel # 百吉圈(硬面包)calibrationcamera_parameters.jsontestcombinedgt # 缺陷部位的分割剪影pngrgb # 原图pngxyz # tiffcontamination # 污染物同上crack同上good同上 hole同上 traingoodrgbxyzvalidationgood同traincla…

【Gitlab】CICD流水线自动化部署教程

第一步,准备 GitLab 仓库 这个不用多说,得先保证你的项目已经托管在一个 GitLab 仓库中。 第二步,定义 .gitlab-ci.yml 文件 在你的项目根目录中创建一个 .gitlab-ci.yml 文件。这个文件将定义所有 CI/CD 的工作流程,包括构建、测…

QT 输入框输入限制 正则表达式限制 整理

在使用 输入数值时,经常遇到限制其范围的需要,比如角太阳高度角范围为[-90,90],经度值范围[-180,180],方位角范围[0,360]。Qt提供了QIntValidator和QDoubleValidator可以限定数值输入范围,如使用QIntValidator限制整数…

数模学习day01-层次分析法模型

已经一个多月没有更新过文章了,为了保住那绩点的意思微弱的优势,直接开摆,开始复习专业课和公共课考试了,结果虽然有遗憾但是还是算不错,至少没有掉到3.xx嘿嘿。 然后现在就要开始学习数学建模和算法同步了。接下来的文…

GPU性能实时监测的实用工具

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

python作业题百度网盘,python作业答案怎么查

大家好,小编来为大家解答以下问题,python作业题百度网盘,python作业答案怎么查,今天让我们一起来看看吧! 1 以下代码的输出结果为: alist [1, 2, 3, 4] print(alist.reverse()) print(alist) A.[4, 3, 2, …

苏州科技大学计算机817程序设计(java) 学习笔记

之前备考苏州科技大学计算机(专业课:817程序设计(java))。 学习Java和算法相关内容,现将笔记及资料统一整理归纳移至这里。 部分内容不太完善,欢迎提议。 目录 考情分析 考卷题型 刷题攻略…

7.2 uvm_resource_db in UVM

uvm_resource_db是一个类型参数化 type-parameterized的类,它是资源数据库顶部的一个方便层(convenience layer)。这个便利层简化了对低级数据库的访问,并且没有添加新功能。因此,uvm_resource_db不是从uvm_resource类派生的。以下uvm_resour…

怎么下载landsat 8影像并在ArcGIS Pro中进行波段组合

Landsat 8(前身为Landsat数据连续性任务,或 LDCM)于2013年2月11日由 Atlas-V火箭从加利福尼亚州范登堡空军基地发射升空,这里为大家介绍一下该数据的下载的方法,希望能对你有所帮助。 注册账号 如果之前已经注册过的…

如何通过内网穿透实现远程访问本地Linux SVN服务

文章目录 前言1. Ubuntu安装SVN服务2. 修改配置文件2.1 修改svnserve.conf文件2.2 修改passwd文件2.3 修改authz文件 3. 启动svn服务4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射本地端口 5. 测试公网访问6. 配置固定公网TCP端口地址6.1 保留一个固定的公网TCP端口地址6…

深信服技术认证“SCCA-C”划重点:云计算基础

为帮助大家更加系统化地学习云计算知识,高效通过云计算工程师认证,深信服特推出“SCCA-C认证备考秘笈”,共十期内容。“考试重点”内容框架,帮助大家快速get重点知识。 划重点来啦 *点击图片放大展示 深信服云计算认证&#xff08…

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…

技术探秘:在RISC Zero中验证FHE——RISC Zero应用的DevOps(2)

1. 引言 前序博客: 技术探秘:在RISC Zero中验证FHE——由隐藏到证明:FHE验证的ZK路径(1) 技术探秘:在RISC Zero中验证FHE——由隐藏到证明:FHE验证的ZK路径(1) 中&…

C单片机数据类型

C语言数据类型 关键字位数表示范围stdint关键字ST关键字unsigned char80 ~ 255uint8_tu8char8-128 ~ 127int8_ts8unsigned short160 ~ 65535uint16_tu16short16-32768 ~ 32767int16_ts16unsigned int320 ~ 4294967295uint32_tu32int32-2147483648 ~ 2147483647int32_ts32unsig…

根据DCT特征训练CNN

记录一次改代码的挣扎经历: 看了几篇关于DCT频域的深度模型文献,尤其是21年FcaNet:基于DCT 的attention model,咱就是说想试试将我模型的输入改为分组的DCT系数,然后就开始下面的波折了。 第一次尝试&#xf…