智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.驾驶训练算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用驾驶训练算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.驾驶训练算法

驾驶训练算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538785
驾驶训练算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

驾驶训练算法参数如下:

%% 设定驾驶训练优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明驾驶训练算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225539.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文笔记】3D Gaussian Splatting for Real-Time Radiance Field Rendering

原文链接:https://arxiv.org/abs/2308.04079 1. 引言 网孔和点是最常见的3D场景表达,因其是显式的且适合基于GPU/CUDA的快速栅格化。神经辐射场(NeRF)则建立连续的场景表达便于优化,但渲染时的随机采样耗时且引入噪声…

测试服务器带宽(ubuntu)

apt install python3 python3-pippip3 install speedtest-clispeestest-cli

Python模拟动态星空

前言 今天,我们来用Python做个星空。 一、模拟星空 1,.首先导入所需要的库: from turtle import * from random import random, randint 2.初始画面: screen Screen() width, height 800, 600 screen.setup(width, height) screen.tit…

使用Dependency Walker和Process Explorer排查瑞芯微工具软件RKPQTool.exe启动报错问题

目录 1、问题说明 2、使用Dependency Walker查看工具程序的库依赖关系 3、在可以运行的电脑上使用Process Explorer查看依赖的msvcr120.dll和msvcp120.dll库的路径 4、C/C运行时库介绍 5、可以下载安装VC_redist.x86.exe或VC_redist.x64.exe解决系统库缺失问题 C软件异常排…

thinkcmf 文件包含 x1.6.0-x2.2.3 已亲自复现

thinkcmf 文件包含 x1.6.0-x2.2.3 CVE-2019-16278 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 漏洞名称 漏洞描述 ThinkCMF是一款基于PHPMYSQL开发的中文内容管理框架,底层采用ThinkPHP3.2.3构建。ThinkCMF提出灵活的应用机制&a…

智慧城市新型基础设施建设综合方案:文件全文52页,附下载

关键词:智慧城市建设方案,智慧城市发展的前景和趋势,智慧城市项目方案,智慧城市管理平台,数字化城市,城市数字化转型 一、智慧城市新基建建设背景 1、城市化进程加速:随着城市化进程的加速&am…

SpringBoot整合JWT+Spring Security+Redis实现登录拦截(二)权限认证

上篇博文中我们已经实现了登录拦截,接下来我们继续补充代码,实现权限的认证 一、RBAC权限模型 什么事RBAC权限模型? RBAC权限模型(Role-Based Access Control)即:基于角色的权限访问控制。在RBAC中&#x…

若依SQL Server开发使用教程

1. sys_menu表中的将菜单ID修改为自动ID,解决不能增加菜单的问题,操作流程如下: 解决方案如下 菜单栏->工具->选项 点击设计器,去掉阻止保存要求更新创建表的更改选项,点确认既可以保存了 2 自动生成代码找不表的解决方案…

Nature Perspective | LLMs 作为角色扮演引擎

文章目录 一、前言二、主要内容三、总结 🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 随着对话智能体的表现越来越像人,我们必须开发出有效的方法,在不陷入拟人化陷阱的情况下,用高层次的术语描述它们的…

Dubbo入门直接上手,结合微服务详解

Dubbo 高性能、轻量级的 Java RPC 框架 RPC: Remote Procedure Call 远程过程调用,简单来说就是它允许一个计算机程序通过网络请求调用另一个计算机上的程序,就像本地调用一样。有非常多的协议和技术来都实现了RPC的过程,比如&a…

【大数据存储与处理】开卷考试总复习笔记

文章目录 实验部分一、 HBase 的基本操作1. HBase Shell入门2. HBase创建数据库表3. HBase数据操作4. HBase删除数据库表5. HBase Python基本编程 before二、 HBase 过滤器操作1.创建表和插入数据2.行键过滤器3.列族与列过滤器4.值过滤器5.其他过滤器6.python hbase 过滤器编程…

Kubernetes(K8S)快速入门

概述 在本门课程中,我们将会学习K8S一些非常重要和核心概念,已经操作这些核心概念对应组件的相关命令和方式。比如Deploy部署,Pod容器,调度器,Service服务,Node集群节点,Helm包管理器等等。 在…

程序员收入与支出 对比分析网红的收入来源

无法收回,就不要花出去。钱只花在增值的事上。 保证一年基本生存的钱不能花。 大额支出要全家协商一致才能花。(别把全家坑了) 作为程序员,您的收入和支出可以从以下几个方面来考虑: 收入 基本薪资:这是…

C# 使用Pipelines处理Socket数据包

写在前面 在上一篇中对Pipelines进行简单的了解,同时也留下了未解的问题,如何将Pipelines类库运用到Socket通讯过程中来解决粘包和分包。链接地址如下: 初识System.IO.Pipelines https://rjcql.blog.csdn.net/article/details/135211047 这…

【Web API系列】使用getDisplayMedia来实现录屏功能

文章目录 前言一、认识getD该处使用的url网络请求的数据。二、使用步骤1.使用方法一实现录屏2.使用方法二实现录屏3. 运行效果 延伸 前言 Web API经过长期的发展,尤其是最近,发展相当迅猛,现在已经支持很多功能了,一些原生就支持…

IRIS、Cache系统类汉化

文章目录 系统类汉化简介标签说明汉化系统包说明效果展示类分类%Library包下的类重点类非重点类弃用类数据类型类工具类 使用说明 系统类汉化 简介 帮助小伙伴更加容易理解后台系统程序方法使用,降低代码的难度。符合本土化中文环境的开发和维护,有助于…

月入7K, 95后护士转行网优,疫情之后,我选择辞掉“铁饭碗”

成为一个三甲医院的护士是什么体验? 如果你一毕业后就进入一家三甲医院,你可能会享受到稳定的就业环境、近在咫尺的机会与资源。 看似稳定与不错的薪资待遇,成为疫情之后普通打工人挤破脑袋也要进入的存在。似乎也能理解各地医院招聘时动辄80…

每日一题-----逆序字符串

大家好我是Beilef,在一个美好的下午我意外接触到编程并且产生了兴趣,哈哈我要努力成为一个跨界者,让我们一起加油吧O(∩_∩)O 文章目录 目录 文章目录 前言 大家好请上车 一、逆序字符串 题⽬描述: 输⼊⼀个字符串,写…

LabVIEW进行激光斑点图像处理与分析

LabVIEW进行激光斑点图像处理与分析 近年来,激光技术的应用日益繁荣。激光光斑的质量评估和分析技术决定了应用效果,对机器视觉、武器装备、光学测量和医疗设备产生深远影响。就具体用途和技术而言,激光光斑的采集和处理至关重要。即插即用的…

第十五节TypeScript 接口

1、简介 接口是一系列抽象方法的声明,是一些方法特征的集合,这些方法都应该是抽象的,需要有由具体的类去实现,然后第三方就可以通过这组抽象方法调用,让具体的类执行具体的方法。 2、接口的定义 interface interface_…