智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.减法平均算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用减法平均算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.减法平均算法

减法平均算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542885
减法平均算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

减法平均算法参数如下:

%% 设定减法平均优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明减法平均算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/227258.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能_机器学习078_聚类算法_概念介绍_聚类升维_降维_各类聚类算法_有监督机器学习_无监督机器学习---人工智能工作笔记0118

首先看一下什么是聚类,我们可以进入sklearn的官网去看看 可以看到这里,首先classification 这个分类我们学完了,然后就是regression回归我们也学完了对吧,其实我们现实生活中的,大部分问题就是 这两种问题就可以解决了. 然后我们再来看一个: clustering,这个就是聚类对吧.聚类算…

提升数据库性能的关键指南-Oracle AWR报告

文章目录 一、了解AWR报告:数据库性能的仪表盘二、生成AWR报告三、解读AWR报告的关键部分1.报告开头的系统基础信息2.ADDM发现3.负载概览(Load Profile)4.参数文件5.顶级前台等待事件6.SQL 统计信息-顶级SQL7.SGA Advisory AND PAG Advisory 一、了解AWR报告&#x…

Linux之磁盘分区,挂载

Linux分区 分区介绍 对linux来说无论有几个分区,分给哪个目录使用,归根结底只有一个根目录,linux中每个分区都是用来组成整个文件系统的一部分。linux采用“载入"的处理方法,他的整个文件系统中包含一整套的文件和目录&…

香橙派 ubuntu实现打通内网,外网双网络,有线和无线双网卡

当香橙派 ubuntu 连了有线,和无线时,默认请求外网时,只走一个网卡,如走了内网网卡,就只能访问内访问,访问不了外网;走了外网网卡就只能访问外网,访问不了内网; 实现双网…

【开源】基于Vue+SpringBoot的公司货物订单管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供应商管理模块2.4 订单管理模块 三、系统展示四、核心代码4.1 查询供应商信息4.2 新增商品信息4.3 查询客户信息4.4 新增订单信息4.5 添加跟进子订单 五、免责说明 一、摘要 1.1 项目…

手写Spring与基本原理--简易版

文章目录 手写Spring与基本原理解析简介写一个简单的Bean加载容器定义一个抽象所有类的BeanDefinition定义一个工厂存储所有的类测试 实现Bean的注册定义和获取基于Cglib实现含构造函数的类实例化策略Bean对象注入属性和依赖Bean的功能Spring.xml解析和注册Bean对象实现应用上下…

2023-12-29 服务器开发-centos部署ftp

摘要: 2023-12-29 服务器开发-centos-部署ftp 部署ftp vsftpd(very secure FTP daemon)是Linux下的一款小巧轻快、安全易用的FTP服务器软件。本教程介绍如何在Linux实例上安装并配置vsftpd。 前提条件 已创建ECS实例并为实例分配了公网IP地址。 背景…

Vue3-26-路由-useRouter 和 useRoute 两个API 的作用介绍

先来说说两个API 的作用 useRouter() : 返回的是项目中的 路由实例的对象 可以通过这个实例对象进行路由的逻辑跳转 useRoute() : 返回的是当前的 路由对象, 可以在当前路由对象中获取到路由名称、路由参数、路由路径等玩完整的路由信息。 写个案例看一下具体是什么…

词法语法语义分析程序设计及实现,包含出错提示和错误恢复

词法说明 (1)关键字 main, int, char, if, else, for, while, void (2)运算符 - * / < < > > ! (3)界符 ; ( ) { } (4)标识符 ID letter(letter|digit)* (5)整型常数 NUM digit digit* (6)空格 ‘ ‘ ‘\n’ ‘\r’ ‘\t’ 空格用来分隔ID,NUM,运算符,界…

从AMI镜像恢复AWS Amazon Linux 2实例碰到的VNC服务以及Chrome浏览器无法启动的问题

文章目录 小结问题及解决VNC服务无法启动Chrome浏览器无法启动 参考 小结 将Amazon Linux 2保存为AMI (Amazon Machine Images)后&#xff0c;恢复成EC2 Instance (实例)后&#xff0c;VNC服务以及Chrome浏览器无法启动&#xff0c;进行了解决。 问题及解决 如果要将一个EC2…

从物联网到 3D 打印:硬件相关的开源项目概览 | 开源专题 No.52

arendst/Tasmota Stars: 20.4k License: GPL-3.0 Tasmota 是一款为 ESP8266 和 ESP32 设备提供的替代固件&#xff0c;具有易于配置的 webUI、OTA 更新、定时器或规则驱动的自动化功能以及通过 MQTT、HTTP、串口或 KNX 进行完全本地控制。该项目主要特点包括&#xff1a; 支持…

2024年上海中考数学提分的有效方法:吃透近十年中考数学真题

再过两天2023年就翻篇了&#xff0c;进入2024年&#xff0c;初三的学子们可能立刻就感觉到中考就在眼前。根据教育部门官方发消息&#xff0c;2024年中考日期安排在2024年6月19-21日&#xff0c;也意味着距离中考还有6个月多一点。 那么如何充分利用这最后的六个多月&#xff…

部署谷歌的Gemini大模型

前言 本文将介绍如何使用Docker、Docker-Compose私有化部署谷歌的Gemini大模型&#xff0c;以及没有服务器的情况下如何使用Vercel来部署。 Demo: 使用新加坡云服务器部署&#xff1a;Gemini Pro Chat (snowice.eu.org) 使用Vercel部署&#xff1a;Gemini Pro Chat (snowice.eu…

基于JAVA的考研专业课程管理系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 考研高校模块2.3 高校教师管理模块2.4 考研专业模块2.5 考研政策模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 考研高校表3.2.2 高校教师表3.2.3 考研专业表3.2.4 考研政策表 四、系统展示五、核…

实现 Spring Boot 项目热重载,无需重启,省时省力

实现 Spring Boot 项目热重载&#xff0c;无需重启&#xff0c;省时省力 插件介绍 通过 JRebel 插件 实现 Spring Boot 项目热重载。类似于前端 Webpack 热重载功能 无需重启&#xff0c;省时省力 安装插件 打开 IDEA 在插件中搜索&#xff1a;JRebel 安装成功后重启IDEA …

Windows Sockets 2 笔记

文章目录 一、Winsock简介二、Windows中Winsock对网络协议支持的情况三、使用Winsock3.1 关于服务器和客户端3.2 创建基本Winsock应用程序3.3 初始化Winscok3.3.1 初始化步骤3.3.2 初始化的核心代码3.3.3 WSAStartup函数的协调3.3.4 WSACleanup函数3.3.5 初始化的完整代码 3.4 …

如何理解Go语言的数组

什么是数组 首先下一个定义&#xff0c;数组是对线性的内存区域的抽象。高维数组和一维数组有着同样的内存布局。&#xff08;大学生考试的时候别借鉴哈&#xff0c;这是自己下的定义&#xff0c;相当于是一篇议论文的论点。&#xff09; 线性的内存区域说白了就是连续的内存…

【Vue】使用Axios请求下载后端返回的文件流,并能够提示后端报错信息

【需求】使用Axios请求下载后端返回的文件流&#xff0c;下载失败时提示信息不写死&#xff0c;按照后端返回的信息进行提示。 一、需求分析 看到这个需求的时候&#xff0c;有人可能会很疑惑&#xff0c;这不是直接就能获取到吗&#xff0c;直接message.error()弹框就完事了&…

【实用工具】Gradio快速部署深度学习应用1:图像分类

前言 在AI快速发展的今天&#xff0c;我们作为算法开发人员&#xff0c;也应该有一些趁手的工具帮助我们快速开发并验证自己的想法&#xff0c;Gradio可以实现快速搭建和共享的功能&#xff0c;能够展示出一个前端界面&#xff0c;把我们的算法包裹起来&#xff0c;快速验证算…