分类模型评估方法

1.数据集划分¶

1.1 为什么要划分数据集?¶

思考:我们有以下场景:

  • 将所有的数据都作为训练数据,训练出一个模型直接上线预测

  • 每当得到一个新的数据,则计算新数据到训练数据的距离,预测得到新数据的类别

存在问题:

  • 上线之前,如何评估模型的好坏?

  • 模型使用所有数据训练,使用哪些数据来进行模型评估?

结论:不能将所有数据集全部用于训练

为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个 "测试集" 来测试学习器对新样本的判别能力,以测试集上的 "测试误差" 作为泛化误差的近似。

一般测试集满足:

  1. 能代表整个数据集
  2. 测试集与训练集互斥
  3. 测试集与训练集建议比例: 2比8、3比7 等

1.2 数据集划分的方法¶

留出法:将数据集划分成两个互斥的集合:训练集,测试集

  • 训练集用于模型训练
  • 测试集用于模型验证
  • 也称之为简单交叉验证

交叉验证:将数据集划分为训练集,验证集,测试集

  • 训练集用于模型训练
  • 验证集用于参数调整
  • 测试集用于模型验证

留一法:每次从训练数据中抽取一条数据作为测试集

自助法:以自助采样(可重复采样、有放回采样)为基础

  • 在数据集D中随机抽取m个样本作为训练集
  • 没被随机抽取到的D-m条数据作为测试集

1.3 留出法(简单交叉验证)

留出法 (hold-out) 将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_irisdef test01():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))# 2. 留出法(随机分割)x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)print('随机类别分割:', Counter(y_train), Counter(y_test))# 3. 留出法(分层分割)x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)print('分层类别分割:', Counter(y_train), Counter(y_test))def test02():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 多次划分(随机分割)spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)for train, test in spliter.split(x, y):print('随机多次分割:', Counter(y[test]))print('*' * 40)# 3. 多次划分(分层分割)spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)for train, test in spliter.split(x, y):print('分层多次分割:', Counter(y[test]))if __name__ == '__main__':test01()test02()

1.4 交叉验证法 

K-Fold交叉验证,将数据随机且均匀地分成k分,如上图所示(k为10),假设每份数据的标号为0-9

  • 第一次使用标号为0-8的共9份数据来做训练,而使用标号为9的这一份数据来进行测试,得到一个准确率
  • 第二次使用标记为1-9的共9份数据进行训练,而使用标号为0的这份数据进行测试,得到第二个准确率
  • 以此类推,每次使用9份数据作为训练,而使用剩下的一份数据进行测试
  • 共进行10次训练,最后模型的准确率为10次准确率的平均值
  • 这样可以避免了数据划分而造成的评估不准确的问题。
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_irisdef test():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 随机交叉验证spliter = KFold(n_splits=5, shuffle=True, random_state=0)for train, test in spliter.split(x, y):print('随机交叉验证:', Counter(y[test]))print('*' * 40)# 3. 分层交叉验证spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)for train, test in spliter.split(x, y):print('分层交叉验证:', Counter(y[test]))if __name__ == '__main__':test()

 1.5 留一法

留一法( Leave-One-Out,简称LOO),即每次抽取一个样本做为测试集。

from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counterdef test01():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 留一法spliter = LeaveOneOut()for train, test in spliter.split(x, y):print('训练集:', len(train), '测试集:', len(test), test)print('*' * 40)# 3. 留P法spliter = LeavePOut(p=3)for train, test in spliter.split(x, y):print('训练集:', len(train), '测试集:', len(test), test)if __name__ == '__main__':test01()

1.6 自助法

每次随机从D中抽出一个样本,将其拷贝放入D,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被抽到; 这个过程重复执行m次后,我们就得到了包含m个样本的数据集D′,这就是自助采样的结果。

import pandas as pdif __name__ == '__main__':# 1. 构造数据集data = [[90, 2, 10, 40],[60, 4, 15, 45],[75, 3, 13, 46],[78, 2, 64, 22]]data = pd.DataFrame(data)print('数据集:\n',data)print('*' * 30)# 2. 产生训练集train = data.sample(frac=1, replace=True)print('训练集:\n', train)print('*' * 30)# 3. 产生测试集test = data.loc[data.index.difference(train.index)]print('测试集:\n', test)

2.分类算法的评估标准¶

2.1 分类算法的评估

如何评估分类算法?

  • 利用训练好的模型使用测试集的特征值进行预测

  • 将预测结果和测试集的目标值比较,计算预测正确的百分比

  • 这个百分比就是准确率 accuracy, 准确率越高说明模型效果越好

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#加载鸢尾花数据
X,y = datasets.load_iris(return_X_y = True)
#训练集 测试集划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
# 创建KNN分类器对象 近邻数为6
knn_clf = KNeighborsClassifier(n_neighbors=6)
#训练集训练模型
knn_clf.fit(X_train,y_train)
#使用训练好的模型进行预测
y_predict = knn_clf.predict(X_test)

 计算准确率:

sum(y_predict==y_test)/y_test.shape[0]

2.2 SKlearn中模型评估API介绍

sklearn封装了计算准确率的相关API:

  • sklearn.metrics包中的accuracy_score方法: 传入预测结果和测试集的标签, 返回预测准去率
  • 分类模型对象的 score 方法:传入测试集特征值,测试集目标值
#计算准确率
from sklearn.metrics import accuracy_score
#方式1:
accuracy_score(y_test,y_predict)
#方式2:
knn_classifier.score(X_test,y_test)

3. 小结¶

  1. 留出法每次从数据集中选择一部分作为测试集、一部分作为训练集
  2. 交叉验证法将数据集等份为 N 份,其中一部分做验证集,其他做训练集
  3. 留一法每次选择一个样本做验证集,其他数据集做训练集
  4. 自助法通过有放回的抽样产生训练集、验证集
  5. 通过accuracy_score方法 或者分类模型对象的score方法可以计算分类模型的预测准确率用于模型评估

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/227550.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

冒泡排序--------(C每日一题)

冒泡排序&#xff1a; 每次将相邻的两个数比较,将小的调到前头--升序 冒泡排序一个结论&#xff1a; n个数要进行n-1轮比较&#xff0c;第j轮要进行n-j次两两比较 循环体代码&#xff1a; int main() {int i, j,n,a[10],t;//n是几个数比较for(j1;j<n-1;j)//控制轮次for…

Bluetooth Mesh 入门学习干货,参考Nordic资料(更新中)

蓝牙网状网络&#xff08;Bluetooth mesh&#xff09;概念 概述 蓝牙Mesh Profile | Bluetooth Technology Website规范&#xff08;Mesh v1.1 后改名Mesh ProtocolMesh Protocol | Bluetooth Technology WebsiteMesh Protocol&#xff09;是由蓝牙技术联盟(Bluetooth SIG)开…

力扣刷题总结 栈与队列

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 一、栈和队列的基础知识 队列是先进先出&#xff0c;栈是先进后出。同时二者都是容器适配器而不是容器。 二、题目实战 232.用栈…

Unity AssetBundle学习笔记

目录 基础介绍 动态资源加载 更新和添加内容 打包策略 资源分组 频繁更新的资源 资源压缩 Unload&#xff08;true&#xff09;和Unload&#xff08;false&#xff09; Unload(false) Unload(true) 确定何时卸载 引用计数 场景和状态管理 资源使用频率 内存预算…

基于CNN神经网络的手写字符识别实验报告

作业要求 具体实验内容根据实际情况自拟&#xff0c;可以是传统的BP神经网络&#xff0c;Hopfield神经网络&#xff0c;也可以是深度学习相关内容。 数据集自选&#xff0c;可以是自建数据集&#xff0c;或MNIST&#xff0c;CIFAR10等公开数据集。 实验报告内容包括但不限于&am…

前端图片适配不同屏幕方案

预备知识&#xff1a; 设备独立像素,以下图的iphone12 Pro为例&#xff0c;390*844表示的就是设备独立像素&#xff08;DIP&#xff09;,也可以理解为CSS像素 物理像素&#xff08;设备像素&#xff09;&#xff0c;就是屏幕的分辨率&#xff0c;显示屏就是由一个个物理像素…

【vim 学习系列文章 3.1 -- vim 删除 ^M】

请阅读【嵌入式开发学习必备专栏 之 VIM 专栏】 文章目录 ^M 来源^M 删除 ^M 来源 在 Vim 中打开文件时&#xff0c;您可能会遇到行尾的 ^M 字符&#xff0c;这通常是因为文件使用了 Windows 风格的回车换行符&#xff08;CRLF&#xff09;&#xff0c;而不是 Unix/Linux 风格…

Java - 工厂设计模式

Java - 工厂设计模式 一. 简介二. 例子2.1 定义抽象类2.2 定义子类2.3 创建工厂2.4 测试 三. JDK中使用工厂模式的案例 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 工厂设计模式…

基于JAVA+SSM+VUE的前后端分离的大学竞赛管理系统

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 随着互联网技术的快速…

尽量避免删改List

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…

【代码随想录】刷题笔记Day42

前言 这两天机器狗终于搞定了&#xff0c;一个控制ROS大佬&#xff0c;一个计院编程大佬&#xff0c;竟然真把创新点这个弄出来了&#xff0c;牛牛牛牛&#xff08;菜鸡我只能负责在旁边喊加油&#xff09;。下午翘了自辩课来刷题&#xff0c;这次应该是元旦前最后一刷了&…

苹果CMS超级播放器专业版无授权全开源,附带安装教程

源码介绍 超级播放器专业版v1.0.8&#xff0c;内置六大主流播放器&#xff0c;支持各种格式的视频播放&#xff0c;支持主要功能在每一个播放器内核中都相同效果。 搭建教程 1.不兼容IE浏览器 2.php版本推荐7.4 支持7.1~7.4 3.框架引入不支持同时引入多个播放器 json对接教…

搭建maven私服

maven maven简介 什么是maven&#xff1f; Maven这个单词来自于意第绪语&#xff08;犹太语&#xff09;&#xff0c;意为知识的积累。 Maven项目对象模型(POM)&#xff0c;可以通过一小段描述信息来管理项目的构建&#xff0c;报告和文档的项目管理工具软件。 Maven 除了以…

数据结构与算法 - 查找

文章目录 第1关&#xff1a;实现折半查找第2关&#xff1a;实现散列查找 第1关&#xff1a;实现折半查找 代码如下&#xff1a; /*************************************************************date: April 2009copyright: Zhu EnDO NOT distribute this code. ***********…

记录一下imx6ull linux 5.10.9多点电容触摸屏驱动报错问题解决方法

最近再研究如何将linux 5.10.9移植到imx6ull&#xff0c;用的原子的开发板&#xff0c;在移植电容触摸屏驱动时报错gpio gpiochip0: (209c000.gpio): gpiochip_lock_as_irq: tried to flag a GPIO set as output for IRQ&#xff0c;如下图&#xff1a; 该错误的意思就是尝试将…

Flink1.17实战教程(第三篇:时间和窗口)

系列文章目录 Flink1.17实战教程&#xff08;第一篇&#xff1a;概念、部署、架构&#xff09; Flink1.17实战教程&#xff08;第二篇&#xff1a;DataStream API&#xff09; Flink1.17实战教程&#xff08;第三篇&#xff1a;时间和窗口&#xff09; Flink1.17实战教程&…

[足式机器人]Part2 Dr. CAN学习笔记-Ch00 - 数学知识基础

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-Ch00 - 数学知识基础 1. Ch0-1矩阵的导数运算1.1标量向量方程对向量求导&#xff0c;分母布局&#xff0c;分子布局1.1.1 标量方程对向量的导数1.1.2 向量方程对向量的导数 1.2 案例分析&#xf…

Java项目:101SpringBoot仓库管理系统

博主主页&#xff1a;Java旅途 简介&#xff1a;分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 仓库管理系统基于SpringBootMybatis开发&#xff0c;系统使用shiro框架做权限安全控制&#xff0c;超级管理员登录系统后可根据自己的实际需求配角色&…

项目中使用Java中List.subList()的注意事项

使用介绍 在Java中&#xff0c;subList是List接口的一个方法&#xff0c;用于获取原始列表的子列表 方法的声明如下 List<E> subList(int fromIndex, int toIndex);fromIndex&#xff1a;起始索引&#xff08;包括&#xff09;toIndex&#xff1a;结束索引&#xff08…

SpringMVC学习与开发(四)

注&#xff1a;此为笔者学习狂神说SpringMVC的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! 11、Ajax初体验 1、伪造Ajax 结果&#xff1a;并未有xhr异步请求 <!DOCTYPE html> &…