【动态规划】【字符串】C++算法:正则表达式匹配

作者推荐

视频算法专题

涉及知识点

动态规划 字符串

LeetCode10:正则表达式匹配

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘’ 的正则表达式匹配。
‘.’ 匹配任意单个字符
'
’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
示例 1:
输入:s = “aa”, p = “a”
输出:false
解释:“a” 无法匹配 “aa” 整个字符串。
示例 2:
输入:s = “aa”, p = “a*”
输出:true
解释:因为 ‘’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。
示例 3:
输入:s = “ab”, p = ".
"
输出:true
解释:"." 表示可匹配零个或多个('’)任意字符(‘.’)。
提示:
1 <= s.length <= 20
1 <= p.length <= 20
s 只包含从 a-z 的小写字母。
p 只包含从 a-z 的小写字母,以及字符 . 和 *。
保证每次出现字符 * 时,前面都匹配到有效的字符

动态规划

时间复杂度😮(nnm) n=s.length m = p.length

动态规划的状态表示p[0,i)和s[0,j)能完全匹配,记录所有(i,j)
动态规划的状态转移方程如果p[i+1]是*,则p[i,i+2)能否匹配s[j,x);否则p[i]能否匹配s[j]
动态规划的的初始化{0,0}
动态规划的填表顺序从小到枚举i
动态规划的返回值是否存在状态(p.length,s.lenght)

滚动哈希集合

转移状态时:只需要读取j1的相关状态,写人j1+1的状态。我们用两个哈希来表示状态:pre表示j1 相关状态,dp 表示j2的相关状态,然后swap。

分类讨论

.*[min(pre),s.length)
字母x*iPre, 如果s[iPre,pPre+y]都是x ,则[iPre+1,iPre+1+y]都是合法状态 iPre取自pre
字母xs[j]==x,则j+1也是合法状态
.s[j]存在,j+1就是合法状态

代码

核心代码

class Solution {
public:bool isMatch(string s, string p) {m_c = s.length();unordered_set<int> pre = { 0 };for (int i = 0 ; i < p.length(); i++ ){	const auto& ch = p[i];if ('*' == ch){continue;}unordered_set<int> dp;if ((i + 1 < p.length()) && ('*' == p[i + 1])){if ('.' == ch){int iMin = INT_MAX;for (const auto& iPre : pre){iMin = min(iMin, iPre);}for (; iMin <= m_c; iMin++){dp.insert(iMin);}}else{dp = pre;for (const auto& iPre : pre){int j = iPre;while (j < m_c){if (s[j] == ch){dp.insert(++j);}else{break;}}}}}else{for (const auto& iPre : pre){if (iPre  < m_c){if (('.' == ch) || (s[iPre] == ch)){dp.insert(iPre + 1);}}}}			pre.swap(dp);}return pre.count(m_c);}int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{string s, p;{Solution sln;s = "aa", p = "a";auto res = sln.isMatch(s, p);Assert(false, res);}{Solution sln;s = "aa", p = "aa";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "a", p = "a*";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "aa", p = "a*";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "aaa", p = "a*";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "ab", p = ".*";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "aab", p = "c*a*b";auto res = sln.isMatch(s, p);Assert(true, res);}{Solution sln;s = "aaaaaaaaaaaaab", p = "a*a*a*a*a*a*a*a*a*a*";auto res = sln.isMatch(s, p);Assert(false, res);}
}

动态规划的优化

时间复杂度😮(nm)
优化动态规划的转移方程,改成枚举s。也要处理匹配多个的问题。比如:连续多个不匹配任何字符。
不用滚动哈希集合了。

动态规划的状态表示p[0,i)和s[0,j)能完全匹配,dp[i][j]为true;否则为false
动态规划的状态转移方程比较复杂下文讨论
动态规划的的初始化dp[0][0]=ture,其它false dp[x][0]也要计算
动态规划的填表顺序从小到枚举i
动态规划的返回值dp[p.length][s.length]

如果p[i-1]是星号,只需要考虑两种情况:

  • 匹配0个字符,dp[i][j] = dp[i-2][j]。
  • 匹配n个字符,n>0。 dp[i][j] = dp[i][j-1]

注意
dp[0][x] x>0,无意义全部为false。
dp[x][0] x>0 如果p[0,x)全部是yyyy… ,则为true。 y表示.或字母,两个y可能不相同。
y* 必须处理号,不能处理y,否则如果以号结束的时候,会出错。

动态规划的无后效性

计算dp[i][j]的时候,用到了i,i-1,i-2,j,j-1。 第一层循环从小到大枚举i,第二层循环从小到大枚举j。i小的先处理,i相等的,j小的先处理。

代码

class Solution {
public:bool isMatch(string s, string p) {m_r = p.length();m_c = s.length();vector<vector<bool>> dp(m_r+1, vector<bool>(m_c+1));dp[0][0] = true; for (int i = 1; (i < m_r)&&('*'== p[i]); i+=2 ){dp[i + 1][0] = dp[i - 1][0];}for (int i = 1; i <= m_r; i++){auto Match = [&p, &s](int i,int j) {return ('.' == p[i]) || (s[j] == p[i]); };if ((i < m_r) && ('*' == p[i])){continue;//x* 在*号那处理}for (int j = 1; j <= m_c; j++){	if ('*' == p[i-1]){if (i >= 2){//匹配0个字符dp[i][j] = dp[i][j] | dp[i - 2][j];}if (!Match(i - 2, j-1)){continue;}dp[i][j] = dp[i][j] | dp[i][j-1];//dp[i][j-1] 的*号,可能匹配了0次,1次,2次...}else{if (!Match(i-1, j-1)){continue;}dp[i][j] = dp[i - 1][j - 1];}}}return dp[m_r][m_c];}int m_r, m_c;
};

2022年12月旧版

class Solution {
public:
bool isMatch(string s, string p) {
const int lenS = s.size();
const int lenP = p.size();
//dp[i][j]表示 p的前i个字符能否和s的前j个字符匹配
vector<vector> dp;
dp.assign(lenP + 1, vector(lenS + 1));
dp[0][0] = true;
for (int i = 1; i <= lenP; i++)
{
for (int j = 0; j <= lenS; j++)
{
if (‘’ == p[i-1])
{
if (dp[i -2][j ])
{//匹配0个字符
dp[i ][j ] = true;
}
if (0 == j)
{
continue;
}
if (IsSame(p[i - 2], s[j-1]))
{
//匹配一次和匹配多次
if (dp[i - 2][j] || dp[i ][j-1])
{
dp[i][j] = true;
}
}
}
if (0 == j)
{
continue;
}
if ((i < lenP) && ('
’ == p[i ]))
{
//dp[i + 1 + 1][j + 1] != dp[i][j];
}
else
{
if (IsSame(p[i-1], s[j-1]) && dp[i-1][j-1] )
{
dp[i][j] = true;
}
}
}
}
return dp[lenP][lenS];
}
bool IsSame(const char& ch1, const char& ch2)
{
return (‘.’ == ch1) || (‘.’ == ch2) | (ch1 == ch2);
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/228315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# WPF上位机开发(MVVM模式开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 学习过vue的同学都知道mvvm这个名词。从字面上理解&#xff0c;可能有点拗口&#xff0c;但是我们可以去理解一下它的优点是什么。mvc相信大家都明…

微信小程序发送模板消息-详解【有图】

前言 在发送模板消息之前我们要首先搞清楚微信小程序的逻辑是什么&#xff0c;这只是前端的一个demo实现&#xff0c;建议大家在后端处理&#xff0c;前端具体实现&#xff1a;如下图 1.获取小程序Id和密钥 我们注册完微信小程序后&#xff0c;可以在开发设置中看到以下内容&a…

加强->servlet->tomcat

0什么是servlet jsp也是servlet 细细体会 Servlet 是 JavaEE 的规范之一&#xff0c;通俗的来说就是 Java 接口&#xff0c;将来我们可以定义 Java 类来实现这个接口&#xff0c;并由 Web 服务器运行 Servlet &#xff0c;所以 TomCat 又被称作 Servlet 容器。 Servlet 提供了…

医院安全(不良)事件报告系统源码 支持二次开发、支持源码交付

医疗不良事件报告系统源码旨在建立全面的、统一的医疗不良事件标准分类系统和患者安全术语&#xff0c;使不良事件上报管理更加标准化和科学化。通过借鉴国内外医疗不良事件报告系统的先进经验&#xff0c;根据医疗不良事件的事件类型、处理事件的不同部门&#xff0c;灵活设置…

【c语言】飞机大战2

1.优化边界问题 之前视频中当使用drawAlpha函数时&#xff0c;是为了去除飞机后面变透明&#xff0c;当时当飞机到达边界的时候&#xff0c;会出现异常退出&#xff0c;这是因为drawAlpha函数不稳定&#xff0c;昨天试过制作掩码图&#xff0c;下载了一个ps,改的话&#xff0c…

排序整形数组--------每日一题

大家好这是今年最后的一篇了&#xff0c;感谢大家的支持&#xff0c;新的一年我会更加努力地。 文章目录 目录 文章目录 题⽬描述&#xff1a; 输⼊10个整数&#xff0c;然后使⽤冒泡排序对数组内容进⾏升序排序&#xff0c;然后打印数组的内容 一、题目解读 冒泡排序是⼀种基础…

redis—List列表

目录 前言 1.常见命令 2.使用场景 前言 列表类型是用来存储多个有序的字符串&#xff0c;如图2-19所示&#xff0c;a、b、C、d、e五个元素从左到右组成 了一个有序的列表&#xff0c;列表中的每个字符串称为元素(element) &#xff0c;一个列表最多可以存储2^32 - 1 个元素…

nodejs微信小程序+python+PHP特困救助供养信息管理系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

uniApp中uView组件库的丰富布局方法

目录 基本使用 #分栏间隔 #混合布局 #分栏偏移 #对齐方式 API #Row Props #Col Props #Row Events #Col Events UniApp的uView组件库是一个丰富的UI组件库&#xff0c;提供了各种常用的UI组件和布局方法&#xff0c;帮助开发者快速构建美观、灵活的界面。下面给你写一…

产品经理学习-策略产品指标

目录&#xff1a; 数据指标概述 通用指标介绍 Web端常用指标 移动端常用指标 如何选择一个合适的数据指标 数据指标概述 指标是衡量目标的一个参数&#xff0c;指一项活动中预期达到的指标、目标等&#xff0c;一般用数据表示&#xff0c;因此又称为数据指标&#xff1b;…

设计模式-调停者模式

设计模式专栏 模式介绍模式特点应用场景调停者模式与命令模式的比较代码示例Java实现调停者模式Python实现调停者模式 调停者模式在spring中的应用 模式介绍 调停者模式是一种软件设计模式&#xff0c;主要用于模块间的解耦&#xff0c;通过避免对象之间显式的互相指向&#x…

PyTorch常用工具(2)预训练模型

文章目录 前言2 预训练模型 前言 在训练神经网络的过程中需要用到很多的工具&#xff0c;最重要的是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这些方面常用的工具模块&#xff0c;合理使用这些工具可以极大地提高编程效率。 由于内容较多&#xff0c;本文分成了五篇…

Pytest 项目结合Jenkins

一、window安装centos7虚拟机 参考网上其他教程 二、Linux安装Jenkins 进入jenkins.io网址&#xff0c;点击download&#xff0c;选择CentOS版本 1、Linux中安装java环境和git Jenkins的运行需要java环境&#xff1b;安装git是为代码上传给仓库做准备&#xff1b; yum - y…

浅谈冯诺依曼体系和操作系统

&#x1f30e;冯诺依曼体系结构 文章目录 冯诺依曼体系结构 认识冯诺依曼体系结构       硬件分类       各个硬件的简单认识         输入输出设备         中央处理器         存储器 关于内存 对冯诺依曼体系的理解 操作系统 操作系统…

linux中用户账号和权限管理

一.Linux 用户分三类 1.普通用户 权限受限制的用户 2. 超级管理员 拥有至高无上权限 3. 程序用户 不是给人使用的&#xff0c;给程序用 运行程序不能使用超级管理员&#xff0c;从安全考虑 超级管理员 uid 为0 普通用户 1000~60000 &#xff0…

Python实现的面部健康特征识别系统

Python实现的面部健康特征识别系统 引言1. 数据集获取与准备2. 模型训练3. Flask框架的应用4. 前台识别测试界面 结论与展望 引言 本文将介绍一个基于Python的面部健康特征判别系统&#xff0c;该系统利用互联网获取的公开数据集&#xff0c;分为健康、亚健康和不健康三个类别…

传统船检已经过时?AR智慧船检来助力!!

想象一下&#xff0c;在茫茫大海中&#xff0c;一艘巨型货轮正缓缓驶过。船上的工程师戴着一副先进的AR眼镜&#xff0c;他们不再需要反复翻阅厚重的手册&#xff0c;一切所需信息都实时显示在眼前。这不是科幻电影的场景&#xff0c;而是智慧船检技术带来的现实变革。那么问题…

零基础打靶—BC1靶场

一、打靶的主要五大步骤 1.确定目标&#xff1a;在所有的靶场中&#xff0c;确定目标就是使用nmap进行ip扫描&#xff0c;确定ip即为目标&#xff0c;其他实战中确定目标的方式包括nmap进行扫描&#xff0c;但不局限于这个nmap。 2.常见的信息收集&#xff1a;比如平常挖洞使用…

【损失函数】SmoothL1Loss 平滑L1损失函数

1、介绍 torch.nn.SmoothL1Loss 是 PyTorch 中的一个损失函数&#xff0c;通常用于回归问题。它是 L1 损失和 L2 损失的结合&#xff0c;旨在减少对异常值的敏感性。 loss_function nn.SmoothL1Loss(reductionmean, beta1.0) 2、参数 size_average (已弃用): 以前用于确定是…

LabVIEW在大型风电机组状态监测系统开发中的应用

LabVIEW在大型风电机组状态监测系统开发中的应用 风电作为一种清洁能源&#xff0c;近年来在全球范围内得到了广泛研究和开发。特别是大型风力发电机组&#xff0c;由于其常常位于边远地区如近海、戈壁、草原等&#xff0c;面临着恶劣自然环境和复杂设备运维挑战。为了提高风电…