从零开始 - 在Python中构建和训练生成对抗网络(GAN)模型

生成对抗网络(GANs)是一种强大的生成模型,可以合成新的逼真图像。通过完整的实现过程,读者将对GANs在幕后的工作原理有深刻的理解。本教程首先导入必要的库并加载将用于训练GAN的Fashion-MNIST数据集。然后,提供了构建GAN核心组件(生成器和判别器模型)的代码示例。接下来的部分解释了如何构建一个组合模型,该模型训练生成器以欺骗判别器,以及如何设计一个训练函数来优化对抗过程。

目录:

1. 导入库和下载数据集

2. 构建生成器模型

3. 构建判别器模型

4. 构建组合模型

5. 构建训练函数

6. 训练和观察结果

  1. 导入库和下载数据集

让我们首先导入本文中将使用的重要库:

from __future__ import print_function, division
from keras.datasets import fashion_mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt

在本文中,您将在Fashion-MNIST数据集上训练DCGAN。Fashion-MNIST包含60,000个用于训练的灰度图像和一个包含10,000个图像的测试集。每个28×28的灰度图像与10个类别中的一个标签相关联。Fashion-MNIST旨在作为原始MNIST数据集的直接替代品,用于对比机器学习算法的性能。与三通道的彩色图像相比,灰度图像在一通道上训练卷积网络时需要更少的计算能力,这使您更容易在没有GPU的个人计算机上进行训练。

a43e74d2137f4a31ce4d40fe66ab7a52.jpeg

数据集分为10个时尚类别。类别标签如下:

760b0174d7592e71606bec49bf3407a5.jpeg

您可以使用以下代码加载数据集:

(training_data, _), (_, _) = fashion_mnist.load_data()
X_train = training_data / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)

要可视化数据集中的图像,可以使用以下代码:

def visualize_input(img, ax):ax.imshow(img, cmap='gray')width, height = img.shapethresh = img.max()/2.5for x in range(width):for y in range(height):ax.annotate(str(round(img[x][y],2)), xy=(y,x),horizontalalignment='center',verticalalignment='center',color='white' if img[x][y]<thresh else="" 'black')=""  =""  
fig = plt.figure(figsize = (12,12))
ax = fig.add_subplot(111)
visualize_input(training_data[3343], ax)We also use batch normalization and a ReLU activation.
For each of these layers, the general scheme is convolution ⇒ batch normalization
⇒ ReLU. We keep stacking up layers like this until we get the final transposed
convolution layer with shape 28 × 28 × 1:

b001bcb6986483ef65aa3f19ef9b657e.jpeg

2. 构建生成器模型

正如我们在前面的文章中所探讨的,GANs由两个主要组件组成,即生成器和判别器。在这一部分中,我们将构建生成器模型,其输入将是一个噪声向量(z)。生成器的架构如下图所示。

第一层是一个全连接层,然后被重新塑造成深而窄的层,在原始的DCGAN论文中,作者将输入重新塑造为4×4×1024。在这里,我们将使用7×7×128。然后,我们使用上采样层将特征映射的维度从7×7加倍到14×14,然后再次加倍到28×28。在这个网络中,我们使用了三个卷积层。我们还将使用批归一化和ReLU激活。

对于每个层,通用方案是卷积 ⇒ 批归一化 ⇒ ReLU。我们不断地堆叠这样的层,直到得到最终的转置卷积层,形状为28×28×1。

4fabaa16f62175b0c474ff334293c279.jpeg

以下是构建上述生成器模型的Keras代码:

def build_generator():generator = Sequential()generator.add(Dense(6272, activation="relu", input_dim=100)) # Add dense layergenerator.add(Reshape((7, 7, 128)))  # reshape the imagegenerator.add(UpSampling2D()) # Upsampling layer to double the size of the imagegenerator.add(Conv2D(128, kernel_size=3, padding="same", activation="relu"))generator.add(BatchNormalization(momentum=0.8))generator.add(UpSampling2D())# convolutional + batch normalization layersgenerator.add(Conv2D(64, kernel_size=3, padding="same", activation="relu"))generator.add(BatchNormalization(momentum=0.8))# convolutional layer with filters = 1generator.add(Conv2D(1, kernel_size=3, padding="same", activation="relu"))generator.summary() # prints the model summary"""We don't add upsampling here because the image size of 28 × 28 is equal to the image size in the MNIST dataset. You can adjust this for your own problem."""noise = Input(shape=(100,))fake_image = generator(noise)# Returns a model that takes the noise vector as an input and outputs the fake imagereturn Model(inputs=noise, outputs=fake_image)

3. 构建判别器模型

GANs的第二个主要组件是判别器。判别器只是一个传统的卷积分类器。判别器的输入是28×28×1的图像。我们希望有一些卷积层,然后是输出的全连接层。

与之前一样,我们希望得到一个Sigmoid输出,并且我们需要返回logits。对于卷积层的深度,我们可以从第一层开始使用32或64个过滤器,然后在添加层时将深度加倍。在这个实现中,我们将从64层开始,然后是128,然后是256。对于降采样,我们不使用池化层。相反,我们只使用步幅卷积层进行降采样,类似于Radford等人的实现。

我们还使用批归一化和dropout来优化训练。对于四个卷积层的每一层,通用方案是卷积 ⇒ 批归一化 ⇒ 泄漏的ReLU。

c99ea77aec1203923646688e02c6e1d6.jpeg

现在,让我们构建build_discriminator函数:

def build_discriminator():discriminator = Sequential()discriminator.add(Conv2D(32, kernel_size=3, strides=2, input_shape=(28,28,1), padding="same"))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(64, kernel_size=3, strides=2,padding="same"))discriminator.add(ZeroPadding2D(padding=((0,1),(0,1))))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Flatten())discriminator.add(Dense(1, activation='sigmoid'))img = Input(shape=(28,28,1))probability = discriminator(img)return Model(inputs=img, outputs=probability)

4. 构建组合模型

正如本系列的第二篇文章中所解释的,为了训练生成器,我们需要构建一个包含生成器和判别器的组合网络。组合模型以噪声信号(z)作为输入,并将判别器的预测输出作为虚假或真实输出。

e90e9c2335ae20998fab73b192b20485.jpeg

重要的是要记住,我们希望在组合模型中禁用判别器的训练,正如本系列的第二篇文章中所解释的那样。在训练生成器时,我们不希望判别器更新权重,但我们仍然希望将判别器模型包含在生成器训练中。因此,我们创建一个包含两个模型的组合网络,但在组合网络中冻结判别器模型的权重:

optimizer = Adam(learning_rate=0.0002, beta_1=0.5)
discriminator = build_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
discriminator.trainable = False# Build the generator
generator = build_generator()
z = Input(shape=(100,))
img = generator(z)
valid = discriminator(img)
combined = Model(inputs=z, outputs=valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)

5. 构建训练函数

为了训练GAN模型,我们训练两个网络:判别器和我们在前面部分创建的组合网络。让我们构建train函数,该函数接受以下参数:

  • epoch

  • batch size 大小

  • save_interval,以指定多久保存一次结果

def train(epochs, batch_size=128, save_interval=50):valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in range(epochs):  # Train Discriminator networkidx = np.random.randint(0, X_train.shape[0], batch_size)imgs = X_train[idx]noise = np.random.normal(0, 1, (batch_size, 100))gen_imgs = generator.predict(noise)d_loss_real = discriminator.train_on_batch(imgs, valid)d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)g_loss = combined.train_on_batch(noise, valid)# printing progressprint("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %(epoch, d_loss[0], 100*d_loss[1], g_loss))if epoch % save_interval == 0:plot_generated_images(epoch, generator)

我们还将创建另一个函数`plot_generated_images()` 来绘制生成的图像。

def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),figsize=(10, 10)):noise = np.random.normal(0, 1, size=[examples, latent_dim])generated_images = generator.predict(noise)generated_images = generated_images.reshape(examples, 28, 28)plt.figure(figsize=figsize)for i in range(generated_images.shape[0]):plt.subplot(dim[0], dim[1], i+1)plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')plt.axis('off')plt.tight_layout()plt.savefig('gan_generated_image_epoch_%d.png' % epoch

最后,让我们为训练GAN模型定义重要的变量和参数:

# Input shape
img_shape = (28,28,1)
channels = 1
latent_dim = 100
optimizer = Adam(0.0002, 0.5)# Build and compile the discriminator
discriminator = build_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build the generator
generator = build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)
# For the combined model we will only train the generator
discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = discriminator(img)
# The combined model  (stacked generator and discriminator)
# Trains the generator to fool the discriminator
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)

6. 训练和观察结果

此时,代码实现已经完成,我们准备开始DCGAN的训练。要训练模型,请运行以下代码行:

train(epochs=1000, batch_size=32, save_interval=50)

这将在1,000个epochs上运行训练,并每50个epochs保存一次图像。当运行`train()` 函数时,训练进度将如下所示:

86d990d67af3b9ee259b9424b3e1e521.jpeg

如下图所示,在epoch = 0时,图像只是随机噪声,没有明确的模式或有意义的数据。到了第50个epoch,图案已经开始形成。

80fb00ada0dc22c60488b9d4fda559aa.jpeg

在训练过程的后期,到了第1,000个epoch,您可以看到清晰的形状,可能能够猜测输入到GAN模型的训练数据的类型。

49de38a46bd9065cb03bb8125b1a990e.jpeg

再快进到第10,000个epoch,您会发现生成器已经非常擅长重新创建训练数据集中不存在的新图像。

de6db2898ea32036dd85c216a275c842.jpeg

·  END  ·

HAPPY LIFE

aeccadbe0b4d2dc12a3db6eea9e70b49.png

本文仅供学习交流使用,如有侵权请联系作者删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/229386.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

听GPT 讲Rust源代码--library/proc_macro

File: rust/library/proc_macro/src/bridge/rpc.rs 在Rust源代码中&#xff0c;rust/library/proc_macro/src/bridge/rpc.rs文件的作用是实现了Rust编程语言的编译过程中的远程过程调用&#xff08;RPC&#xff09;机制。 这个文件定义了与编译器的交互过程中使用的各种数据结构…

JavaWeb——前端之AjaxVue

6. 前后端交互 6.1 Ajax&#xff08;原生的&#xff09; 概念&#xff1a; Asynchronous JavaScript And XML&#xff08;异步的JavaScript和XML&#xff09; 作用&#xff1a; 数据交互&#xff1a;通过Ajax可以给服务器发送请求&#xff0c;并获取服务器响应的数据异步交…

JVM工作原理与实战(三):字节码文件的组成

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、基础信息 1.Magic魔数 2.主副版本号 3.其他信息 二、常量池 1.案例解析 三、方法 1.方法介绍 2.案例解析 四、字段 五、属性 总结 前言 JVM作为Java程序的运行环境&…

【笔试强训】Day1_贪心算法_组队竞赛

题目链接&#xff1a;牛客_组队竞赛 目录 题目解析 代码书写 知识补充 题目解析 题目让我们求所有队伍的水平值总和最大 由题可得&#xff1a; 队伍的水平值等于该队伍队员中第二高水平值; 随机给定3*n个数&#xff0c;需要自己组队并且得出队伍水平最大值&#xff1b; 我…

Python进行批量字符替换的3种方法

一、问题的提出 之前&#xff0c;我写过一篇如何在word中计算数学算式&#xff1a; 如何用Python批量计算Word中的算式-CSDN博客 为了计算算式&#xff0c;就需要对算式进行格式化&#xff0c;把不规则的算式转换成规则的算式&#xff0c;这时就会涉及到一些字符的批量替换。…

山西电力市场日前价格预测【2024-01-03】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2024-01-03&#xff09;山西电力市场全天平均日前电价为208.80元/MWh。其中&#xff0c;最高日前电价为358.56元/MWh&#xff0c;预计出现在18:00。最低日前电价为0.00元/MWh&#xff0c;预计出…

Windows上ModbusTCP模拟Master与Slave工具的使用

场景 Modbus Slave 与 Modbus Poll主从设备模拟软件与Configure Virtual Serial串口模拟软件使用&#xff1a; Modebus Slave 与 Modbus Poll主从设备模拟软件与Configure Virtual Serial串口模拟软件使用_modbus poll激活-CSDN博客 数据对接协议为Modbus TCP,本地开发需要使…

水果软件2024FL Studio21.3mac苹果中文版

FL STUDIO21发布&#xff0c;提供您一直在等待的出色工作流程功能。通过新效果、多个播放列表曲目选择和无所畏惧的撤消一切编辑&#xff0c;将您的音乐带入2024年。FL Studio21中文完整版是一个功能齐全、开放式架构的PC音乐创作和制作环境。它具有基于音乐音序器的图形用户界…

【番外】在Windows安装Airsim/UE4踩坑合集

在Windows安装Airsim/UE4踩坑合集 1.安装过程中一定要确保Epic Games Launcher是英文环境&#xff0c;保存路径什么的也尽量是英文。2.UE4中的虚幻引擎一定要安装4.27版本以上的&#xff0c;不然的话最后运行vs的时候会报语法错误&#xff0c;网上根本查不到的那种错误。换了版…

Android 13 - Media框架(29)- MediaCodec(四)

上一节我们了解了如何通过 onInputBufferAvailable 和 getInputBuffer 获取到 input buffer index&#xff0c;接下来我们一起学习上层如何拿到buffer并且向下写数据的。 1、获取 input Buffer 获取 MediaCodec 中的 buffer 有两种方式&#xff0c;一种是调用 getInputBuffers…

【ArcGIS微课1000例】0083:地震灾害图件制作之土壤类型分布图

本文基于1:400万矢量土壤图,制作甘肃积石山6.2级地震100km范围内土壤类型分布图。 文章目录 一、土壤分布图预览二、数据集来源及简介三、土壤分布图制作一、土壤分布图预览 二、数据集来源及简介 1. 数据来源 数据集为1:400万中国土壤图,1:400万中国土壤图(2000)由中国科…

BloombergGPT—金融领域大模型

文章目录 背景BloombergGPT数据集金融领域数据集通用数据集分词 模型模型结构模型相关参数训练配置训练过程 模型评估评估任务分布模型对比金融领域评估通用领域评估 背景 GPT-3的发布证明了训练非常大的自回归语言模型&#xff08;LLM&#xff09;的强大优势。GPT-3有1750亿个…

工程(十七)——自己数据集跑R2live

博主创建了一个科研互助群Q&#xff1a;772356582&#xff0c;欢迎大家加入讨论。 r2live是比较早的算法&#xff0c;编译过程有很多问题&#xff0c;通过以下两个博客可以解决 编译R2LIVE问题&解决方法-CSDN博客 r2live process has died 问题解决了_required process …

3Dmax模型打开后灯光全没了---模大狮模型网

在3ds Max中&#xff0c;有时您可能会打开一个3dmax模型文件后发现灯光似乎丢失了。这可能是由于以下原因之一导致的&#xff1a; 灯光层被隐藏或删除了。在3ds Max中&#xff0c;您可以将不同的对象分配给不同的层&#xff0c;以方便管理和编辑。如果灯光对象被分配到另一个层…

【数学建模美赛M奖速成系列】Matplotlib绘图技巧(二)

Matplotlib绘图技巧&#xff08;二&#xff09; 写在前面2. 函数间区域填充函数fill_between()和fill()参数&#xff1a; 3. 散点图 scatter4. 直方图 hist5. 条形图 bar5.1 一个数据样本的条形图参数&#xff1a; 5.2 多个数据样本进行对比的直方图5.3 水平条形图参数 5.4 绘制…

堆排序(C语言版)

一.堆排序 堆排序即利用堆的思想来进行排序&#xff0c;总共分为两个步骤&#xff1a; 1. 建堆 升序&#xff1a;建大堆 降序&#xff1a;建小堆 2. 利用堆删除思想来进行排序 1.1.利用上下调整法实现堆排序 第一步&#xff1a;建堆 好了&#xff0c;每次建堆都要问自己…

ArkTS基本概念装饰器

目录 ArkTS基本概念 装饰器汇总 ArkTS基本概念 ArkTS是HarmonyOS的主力应用开发语言。 它在TypeScript&#xff08;简称TS&#xff09;的基础上&#xff0c;匹配ArkUI框架&#xff0c;扩展了声明式UI、状态管理等相应的能力&#xff0c;让开发者以更简洁、更自然的方式开发跨…

cocos creator + vscode debug

安装插件 安装插件&#xff1a;JavaScript Debugger 配置 7456 为本地cocos creator的启动端口 启动debug调试 选择对应的启动方式

低成本TB级数据库技术选型之思考两三点

一、背景 前段时间在搞毕业论文的选题&#xff0c;最头疼的就是大量的文献检索和阅读&#xff0c;从研究的角度上我们可以将文献分为四类&#xff1a; 理论文献&#xff1a;为研究提供理论的框架和基础的文献。这些文献可能并不会和所做的研究直接相关&#xff0c;甚至由于理…

叫板GPT-4的Gemini,我做了一个聊天网页,可图片输入,附教程

先看效果&#xff1a; 简介 Gemini 是谷歌研发的最新一代大语言模型&#xff0c;目前有三个版本&#xff0c;被称为中杯、大杯、超大杯&#xff0c;Gemini Ultra 号称可与GPT-4一较高低&#xff1a; Gemini Nano(预览访问) 为设备端体验而构建的最高效模型,支持离线使用场景。…