【数字图像处理技术与应用】2023-2024上图像处理期中-云南农业大学

一、填空题(每空2 分,共 30 分)

1、图像就是3D 场景在 二维 平面上的影像,根据其存储方式和表现形式,可以将图像分为 模拟 图像和数字图像两大类;

2、在用计算机对数字图像处理中,常用一个 二维 数组来存放图像数据,其大小与数字图像的大小一致(相同)

3、数字图像按存储格式可分为点位图和矢量(矢量图)

4、对于图像f(x, y)=xy2+3x ,它在点(x, y)处的梯度为▽f (x, y)= [y2+3,2xy]

5、图像数字化包括2 个过程:采样和 量化

6、傅立叶变换除了用于转换数字图像的图像信息,还能将 微分 方程转换成线性方程;

7、一幅基于3 基色 R,G,B 的 16 位颜色深度点位图,其颜色数量为 216

8、 GIF 文件可以用来存储简单的动画,网页动画与QQ 表情就是借助它实现的;

9、可以通过 阈值 变换将一幅灰度图转换成黑白图;

10、一幅图形经过离散傅立叶变换后,低频信号集中于频域的 中心(中心区域)

11、图像锐化的微分法,主要有 梯度 法和拉普拉斯法。

12、集合A={a ,b ,c} ,B={b ,c ,d} ,则集合 A⊕(异或)B= {a,b}

13、形态学图像处理中的开操作(Opening)A B ,相当于先用 B 对 A 进行腐蚀,然后用 B 对腐蚀结果进行 膨胀

二、判断题,正确打√ , 错误打 ⅹ(每题 1 分,共 10 分)

1、数字图像处理与图形学,研究的内容大致相同,方法也大致相同;( × )

2、饱和度是指颜色的纯度,即掺入白光的程度,指颜色的深浅程度;( √ )

3、傅立叶变换的结果是复数;( √ )

4、灰度图像的像素值只能是0 或 1; ( × )

5、伪彩色图像是灰度图象经过伪彩色处理后得到的,其目的是为了增强图像的视觉效果;( × )

6、图像锐化,经常采用卷积模板进行数字化处理,以提高处理速度和程序的通用性;( √ )

7、灰度线性变换的变换曲线,当斜率倾角小于45 度时,是扩展原图像的灰度动态范围;( × )

8、灰度线性变换中的削波变换,通常用于将灰度图像转换成黑白图;( × )

9、一维FFT 变换算法的时间复杂度为 N*log2N;( √ )

10、多图像平均法是利用同一景物的多幅图像取平均来消除噪声产生的高频成分。( √ )

三、简答题(每小题5 分,共 20 分)

1、试描述灰度图像与彩色图像的区别;

答:灰度图像在黑与白之间,有过渡灰色信息,但与彩色图像相比,仅有灰度和灰度的浓暗信息,没有颜色信息,以人眼对灰度的敏感程度,只能分辨约60 级 左右的灰度信息,一般存储灰度像素信息仅需 1 字节 8 位二进制;彩色图像除了 有灰度信息,还有颜色信息,计算机存储颜色信息通常采用 RGB 颜色模型。

2、下面左图是一张正常的女孩照片,右边是另一张对应女孩的直方图,请说出该直方图所对应女孩的照片的对比度和动态范围存在什么问题。

答:动态范围过窄,图像过暗;

3、请计算不定积分公式: ∫ ex sinxdx (偶数学号) , ∫ ex cosxdx (奇数学号)

偶数学号:

\int e^{x} \sin x \ dx = -e^{x} \cos x + \int e^{x} \cos x \, dx \\ -e^{x} \cos x + \left( e^{x} \sin x - \int e^{x} \sin x \, dx \right) \\ -e^{x} \cos x + e^{x} \sin x - \int e^{x} \sin x \, dx \\ -e^{x} \cos x + (e^{x} \sin x - \left( -e^{x} \cos x \right)/2

奇数学号:

\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx \\ e^{x} \sin x + \left( e^{x} \cos x - \int e^{x} \cos x \, dx \right) \\ e^{x} \sin x + (e^{x} \cos x + \left( -e^{x} \sin x \right)/2

4 、根据以下的傅立叶变换蝶形单元,请推断 F(0)和 F(4)的计算公式。

答:以上蝶形运算单元的公式如下:

F(0)=G(0)+H(0)W08

F(4)=G(0)-H(0)W08

四、一副模拟彩色图像经平板扫描仪后获得一副彩色数字图像,其分辨率为1024×768 像素。 若采用 RGB 彩色空间,红、绿、蓝三基色的灰度等级为 8bit,在无压缩的情况下,在计算机 中存储该图像将占用多少BYTE 的存储空间?当用 PHOTOSHOP 图像处理软件去掉图像的彩色信 息,只留下灰度信息,灰度等级为 8bit,在无压缩的情况下,存储图像将占用多少 bit 的存储空间?(5 分)

答:
(1)1024 x 768 x 8 x 3/8BYTE = 1024 x 768 x 3BYTE=3 x 768KB

(2)1024 x 768 x 8bit

五、利用右边半径为 1 的小圆对左边边长为 200 ,带有 2 个内孔的正方形施加膨胀运算,请画出膨胀运算后的图形。(5 分)

答:

六、请用左图的梯度算子模板给右图的 6x6 像素灰度图进行梯度锐化处理。(s 分)

答:

七、一原始图像共 8 个灰度级,其概率分布如下表:

灰度级 rk

r0=0

r1= 1/7

r2=2/7

r3=3/7

r4=4/7

r5=5/7

r6=6/7

r7= 1

像素数量 nk

790

1023

850

656

329

245

122

81

概率分布 P(rk)

0.19

0.25

0.21

0.16

0.08

0.06

0.03

0.02

原灰度级

变换函数 T(rk)值

像素数量

量化级

新灰度级及像素数量

新灰度级的像素概率分布

r0=0

T(r0)=S0=0.19

790

0

0

r1= 1/7

T(r1)=S1=

1023

1/7=0. 14

r0 s1

0.19

r2=2/7

T(r2)=S2=

850

2/7=

r3=3/7

T(r3)=S3=

656

3/7=

r1 s3

0.25

r4=4/7

T(r4)=S4=

329

4/7=

r5=5/7

T(r5)=S5=

245

5/7=

r2 s5

0.21

r6=6/7

T(r6)=S6=

122

6/7=

r3 、r4 → s6

0.16+0.08

r7= 1

T(r7)=S7=

81

7/7= 1

r5 、r6 、r7 → s7

0.06+0.03+0.02

请仔细填写下图的直方图均衡化过程:(5 分)

答题要求:请在填表过程中,用箭头标明均衡化前后的灰度级对应关系;

注:1、原灰度级为 r0 、r1…r6 、r7 ,转换后的灰度级为:S0 ’、S1 ’、S2 ’…

2、直方图均衡化后,灰度级数量可能会较均衡化以前减少;

八、(C 语言版)请写一 C 代码片断,实现一幅彩色图像灰度化的处理(10 分)

初始条件:1 、像素彩色信息已存储于数组

struct RGB {unsigned char R;unsigned char G;unsigned char B;};struct RGB A[128][128]中;

2 、转换后的图像信息应存储于数组 unsigned char B[128][128]中;

答题要求:1 、请按要求的初始条件写出彩色图像灰度化的处理代码,不必写主函数,只需写出符合题目

要求的关键代码;

注意事项:1 、如果照抄实验代码,与题目所给的原始图像数组和处理后的图像信息数组不符,不能给分;

答:

#include <stdint.h>// 定义RGB结构体,用于存储彩色像素的RGB值
struct RGB {unsigned char R; // 红色分量unsigned char G; // 绿色分量unsigned char B; // 蓝色分量
};// 假设A数组已经填充了彩色图像的像素数据
struct RGB A[128][128];
// B数组用于存储灰度图像数据
unsigned char B[128][128];// 将彩色图像转换为灰度图像的函数
void convertToGrayscale() {for (int i = 0; i < 128; ++i) {for (int j = 0; j < 128; ++j) {// 计算RGB分量的平均值,得到灰度值unsigned char gray = (A[i][j].R + A[i][j].G + A[i][j].B) / 3;// 将计算出的灰度值赋给B数组,存储灰度图像信息B[i][j] = gray;}}
}// 注意:convertToGrayscale函数假设A数组已经用图像数据填充。
// 在主程序中初始化A数组后,调用此函数。

(Python 语言版)请写一 Python 代码片断,实现一幅彩色图像的灰度化处理(10 分)

import cv2img = cv2.imread('2.jpg', 1)i=j=0sp=img.shape#请在此处填写彩色图像灰度化的处理代码,包括循环语句cv2.imshow('image',img)

注:1 、读取的彩色图形文件为 2.jpg ,读取的图像信息存储于对象数组 img ,已经是彩色图像信息;

2 、图像 x 方向分辨率为 sp[0],y 方向分辨率为 sp[1] ,转换后的阈值化图形存储在 img;

3 、坐标(x,y)的像素的颜色信息存储于 img[x][y] ,其中 img[x][y][0]是蓝色 ,img[x][y][1]是绿色,

img[x][y][2]是红色;

答:

import cv2
import numpy as np# 读取彩色图像
img = cv2.imread('2.jpg', 1)# 获取图像的尺寸
sp = img.shape# 循环处理每个像素
for x in range(sp[0]):for y in range(sp[1]):# 获取像素的BGR颜色值(b, g, r) = img[x, y]# 计算灰度值,这里使用常见的加权平均法gray = int(0.299 * r + 0.587 * g + 0.114 * b)# 设置像素为灰度值img[x, y] = (gray, gray, gray)# 在窗口中显示灰度化后的图像
cv2.imshow('Grayscale Image', img)# 等待按键后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

九、(C 语言版)请写一 C 代码片断,实现一幅灰度图像的阈值化处理(10 分)

初始条件:1 、像素灰度信息已存储于数组 unsigned char A[128][128]中;

2 、转换后的图像信息应存储于数组 unsigned char B[128][128]中;

3 、阈值 a= 120 ,灰度大于阈值时,灰度取 220 ,小于阈值时,灰度取 0;

答题要求:1 、请按要求的初始条件写出灰度图像的阈值化处理代码,不必写主函数,只需写出符合题目

要求的关键代码;

答:

unsigned char A[128][128]; // 假设这是输入的灰度图像
unsigned char B[128][128]; // 输出的图像
int i, j;
unsigned char a = 120; // 阈值for(i = 0; i < 128; i++) {for(j = 0; j < 128; j++) {if(A[i][j] > a)B[i][j] = 220; // 灰度大于阈值时,灰度取220elseB[i][j] = 0;   // 灰度小于等于阈值时,灰度取0}
}

2 、请绘出该灰度线性变换的变换曲线。

答:

注意事项:1 、如果照抄实验代码,与题目所给的原始图像数组和处理后的图像信息数组不符,不能给分;

(Python 语言版)请写一 Python 代码片断,实现一幅灰度图像的阈值化处理(10 分)

以下是代码片段,请填写 Python 版的灰度图像阈值化处理的代码:

import cv2img = cv2.imread('2.jpg', 1)i=j=0sp=img.shape#请在此处填写灰度图像的阈值化代码,包括循环语句cv2.imshow('image',img)

注:1 、阈值 a= 120 ,灰度大于阈值时,灰度取 220 ,小于阈值时,灰度取 0;

2 、读取的灰度图形文件为 2.jpg ,读取的图像信息存储于对象数组 img ,已经是灰度图像,其 R ,G,B 的灰度值均相等,即 R=G=B;

3 、图像 x 方向分辨率为 sp[0],y 方向分辨率为 sp[1] ,转换后的阈值化图形存储在 img;

答:

import cv2
img = cv2.imread('2.jpg', 0)  # 以灰度模式读取图像【灰度阈值变换曲线、阈值变换、输入强度、输出强度】
threshold = 120  # 设置阈值
sp = img.shape  # 获取图像的尺寸
# 应用阈值化处理
for i in range(sp[0]):for j in range(sp[1]):if img[i, j] > threshold:img[i, j] = 220else:img[i, j] = 0cv2.imshow('Thresholded Image', img)cv2.waitKey(0)# 显示阈值化后的图像
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/229427.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机专业个人简历范文(8篇)

HR浏览一份简历也就25秒左右&#xff0c;如果你连「好简历」都没有&#xff0c;怎么能找到好工作呢&#xff1f; 如果你不懂得如何在简历上展示自己&#xff0c;或者觉得怎么改简历都不出彩&#xff0c;那请你一定仔细读完。 互联网运营个人简历范文> 男 22 本科 AI简历…

【JVM】一文掌握JVM垃圾回收机制

作为Java程序员,除了业务逻辑以外,随着更深入的了解,都无法避免的会接触到JVM以及垃圾回收相关知识。JVM调优是一个听起来很可怕,实际上很简单的事。 感到可怕,是因为垃圾回收相关机制都在JVM的C++层实现,我们在Java开发中看不见摸不着;而实际很简单,是因为它说到底,也…

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测 目录 分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测&#xff08;完整…

wordpress在界面将站点地址直接修改为https导致上不去问题的解决办法

wordpress在界面将站点地址直接修改为https导致上不去问题的解决办法 #修改数据库yz_options

C#使用纯OpenCvSharp部署yolov8-pose姿态识别

【源码地址】 github地址&#xff1a;https://github.com/ultralytics/ultralytics 【算法介绍】 Yolov8-Pose算法是一种基于深度神经网络的目标检测算法&#xff0c;用于对人体姿势进行准确检测。该算法在Yolov8的基础上引入了姿势估计模块&#xff0c;通过联合检测和姿势…

C# Image Caption

目录 介绍 效果 模型 decoder_fc_nsc.onnx encoder.onnx 项目 代码 下载 C# Image Caption 介绍 地址&#xff1a;https://github.com/ruotianluo/ImageCaptioning.pytorch I decide to sync up this repo and self-critical.pytorch. (The old master is in old ma…

有道翻译web端 爬虫, js

以下内容写于2023-12-28, 原链接为:https://fanyi.youdao.com/index.html#/ 1 在输入框内输入hello world进行翻译,通过检查发出的网络请求可以看到翻译文字的http接口应该是: 2 复制下链接最后的路径,去js文件中搜索下: 可以看到这里是定义了一个函数B来做文字的翻译接口函数…

PHP序列化总结2--常见的魔术方法

魔术方法的概念 PHP的魔术方法是一种特殊的方法&#xff0c;用于覆盖PHP的默认操作。它们以双下划线&#xff08;__&#xff09;开头&#xff0c;后面跟着一些特定的字符串&#xff0c;如__construct()、__destruct()、__get()等。这些魔术方法在对象执行特定操作时被自动调用…

idea配置docker推送本地镜像到远程私有仓库

目录 1&#xff0c;搭建远程Docker 私有仓库 Docker registry 2&#xff0c;Windows10/11系统上安装Docker Desktop 3&#xff0c;idea 配置远程私有仓库地址 4&#xff0c;idea 配置Docker 5&#xff0c;idea在本地构建镜像 6&#xff0c;推送本地Docker镜像到远程 Dock…

K8S陈述式资源管理(1)

命令行: kubectl命令行工具 优点: 90%以上的场景都可以满足对资源的增&#xff0c;删&#xff0c;查比较方便&#xff0c;对改不是很友好 缺点:命令比较冗长&#xff0c;复杂&#xff0c;难记声明式 声明式&#xff1a;K8S当中的yaml文件来实现资源管理 GUI&#xff1a;图形…

接口测试实战教程详解(加密解密攻防)

一、对称加密 对称加密算法是共享密钥加密算法&#xff0c;在加密解密过程中&#xff0c;使用的密钥只有一个。发送和接收双方事先都知道加密的密钥&#xff0c;均使用这个密钥对数据进行加密和解密。 数据加密&#xff1a;在对称加密算法中&#xff0c;数据发送方将明文 (原…

CCNP课程实验-03-Route_Path_Control_CFG

目录 实验条件网络拓朴需求 基础配置需求实现1.A---F所有区用Loopback模拟&#xff0c;地址格式为&#xff1a;XX.XX.XX.XX/32&#xff0c;其中X为路由器编号。根据拓扑宣告进对应协议。A1和A2区为特例&#xff0c;A1&#xff1a;55.55.55.0/24&#xff0c;A2&#xff1a;55.55…

万界星空科技低代码平台基本模块与优势

低代码平台&#xff08;Low-Code Development Platform&#xff0c;LCDP&#xff09;就是使用低代码的方式进行开发&#xff0c;能快速设置和部署的平台。低代码平台旨在简化应用开发过程&#xff0c;降低开发难度&#xff0c;缩短开发周期&#xff0c;并使非专业程序员&#x…

从0到1实战,快速搭建SpringBoot工程

目录 一、前言 二、准备工作 2.1 安装JDK 2.2 安装Maven 2.3 下载IDEA 三、从0到1搭建 3.1 创建SpringBoot工程 3.2 运行SpringBoot工程 四、总结 一、前言 SpringBoot是一个在Spring框架基础上构建的开源框架&#xff0c;不仅继承了Spring框架原有的优秀特性&#x…

学习Go语言Web框架Gee总结--http.Handler(一)

学习Go语言Web框架Gee总结--http.Handler http-base/go.modhttp-base/main.gohttp-base/gee/gee.gohttp-base/gee/go.mod 网站学习来源&#xff1a;Gee 代码目录结构&#xff1a; http-base/go.mod //指定当前模块的名称为 "example" module example//指定当前模…

Http状态:net::ERR_INCOMPLETE_CHUNKED_ENCODING

一、问题描述&#xff1a; 今天前端的小伙伴遇到一个js文件加载报错&#xff1a;net::ERR_INCOMPLETE_CHUNKED_ENCODING&#xff0c;不论如何刷新页面始终只有该文件加载失败&#xff0c;Chrome开发者工具中响应内容显示此请求没有可用的响应数据。 二、原因调查 排除非前端发…

2023年12月编程语言排行榜

TIOBE Index for December 2023 December Headline: C# on its way to become programming language of the year 2023 2023年12月的TIOBE指数&#xff1a;12月头条:c#将成为2023年最佳编程语言 Yes, I know, we have been here before. At the end of 2022, it looked like …

第一个Qt程序----Hellow word!

从今天起就开始我们的第一个Qt小程序&#xff0c;点击New Project后点击右侧的Application后点击Qt Widgets Application。Qt Widgets 模块提供了一组UI元素用于创建经典的桌面风格的用户界面&#xff0c;Widgets是小部件的意思&#xff0c;也可以称为控件&#xff0c;因此Qt …

亚信安慧AntDB数据并行加载工具的实现(二)

3.功能性说明 本节对并行加载工具的部分支持的功能进行简要说明。 1) 支持表类型 并行加载工具支持普通表、分区表。 2) 支持指定导入字段 文件中并不是必须包含表中所有的字段&#xff0c;用户可以指定导入某些字段&#xff0c;但是指定的字段数要和文件中的字段数保持一…

Redis双写一致性

文章目录 Redis双写一致性1. 延迟双删&#xff08;有脏数据风险&#xff09;2. 异步通知&#xff08;保证数据最终一致性&#xff09;3. 分布式锁&#xff08;数据的强一致&#xff0c;性能低&#xff09; Redis双写一致性 当修改了数据库的数据也要同时更新缓存的数据&#xf…