自动驾驶论文

文章目录

  • 一、Convolutional Social Pooling for Vehicle Trajectory Prediction
  • 二、QCNet:Query-Centric Trajectory Prediction
  • 三、VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation

一、Convolutional Social Pooling for Vehicle Trajectory Prediction

Convolutional Social Pooling for Vehicle Trajectory Prediction

在这里插入图片描述
提出一个lstm的encoder和decoder,用cnn social pooling替换social pooling来更健壮的学习车辆运动过程中的相互依赖性,加cnn的好处是:cnn能感知局部车辆相对位置来弥补lstm不能感知相对位置的缺点。另外,模型基于机动类输出一个多模态的预测分布在未来轨迹上。
Convolutional social pooling:我们对于lstm隐藏状态的社会张量(social-tensor)(该状态编码相邻车辆的过去运动),应用cnn和最大池化层来代替一个全连接层

基于机动的解码器:我们的lstm解码器给生成6个机动类的概率分布在未来运动上,并且给每个类分配一个概率,这就是未来运动的多模态性质

二、QCNet:Query-Centric Trajectory Prediction

QCNet:Query-Centric Trajectory Prediction

在这里插入图片描述
以查询为中心的场景编码范式,通过学习独立于全局时空坐标系的表示,可以重用过去的计算。在所有目标代理之间共享不变的场景特征进一步允许多代理轨迹解码的并行性。首先采用无锚查询以递归的方式生成轨迹建议,这允许模型在解码不同地平线上的路点时利用不同的场景上下文。然后,细化模块将轨迹建议作为锚点,并利用基于锚点的查询来进一步细化轨迹。通过向细化模块提供自适应和高质量的锚点,我们的基于查询的解码器可以更好地处理轨迹预测输出中的多模态。

三、VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation

VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
我们提出直接从它们的矢量形式中学习一个动态交通参与者和结构化场景的统一的表示(如图1的右图所示)。道路特征的地理延伸可以是一个点,多边形或是曲线。例如,车道边界包含可以构成样条曲线的多个控制点;人行横道是由几个点定义的多边形;停止标识通过一个点来表示。所有的地理实体都可以被近似为多个控制点定义的折线。同时,动态交通参与者也可以通过他们的运动轨迹被近似为折线。所有的这些折线都可以表示为矢量的集合。

在这里插入图片描述图1. 栅格化渲染方法(左)和矢量化方法(右)表示高精度地图与交通参与者运动轨迹

我们使用图神经网络来合并这些向量的集合。我们将每个向量视为图中的一个节点,并且定义节点的特征包含每个向量的起始位置和结束位置,以及其它属性,包括折线ID和语义标签。通过图神经网络,高精度地图的环境信息和其他交通参与者的运动轨迹被整合到目标交通参与者节点上。然后我们可以解码目标交通参与者输出的节点特征来预测它未来的运动轨迹。

特别地,为了学习图神经网络的竞争性表示,我们发现基于节点的空间和语义邻近性来约束图的连通性是很重要的。因此,我们提出了一个分层的图网络结构,首先把具有相同折线ID,并且具有相同语义标签的向量整合成折线特征,然后所有不同的折线特征互相连通交换信息。我们通过多层感知机实现局部图,通过自注意力机制[30]实现全局图。我们的方法如图2所示。

在这里插入图片描述
图2. 我们提出的VectorNet框架。观察到的交通参与者运动轨迹和地图特征被表示为矢量序列,然后传入局部图网络中获得折线级的特征。这些特征然后被传入一个全连接图网络中来建模高阶的交互。我们计算两类损失:从目标交通参与者对应的节点特征中预测其未来轨迹,以及预测图网络中被掩盖的节点特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/229482.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spark精讲】一文讲透Spark宽窄依赖的区别

宽依赖窄依赖的区别 窄依赖:RDD 之间分区是一一对应的宽依赖:发生shuffle,多对多的关系 宽依赖是子RDD的一个分区依赖了父RDD的多个分区父RDD的一个分区的数据,分别流入到子RDD的不同分区特例:cartesian算子对应的Car…

vue +elementui 项目登录通过不同账号切换侧边栏菜单的颜色

前景提要:要求不同权限账号登录侧边栏颜色不一样。分为 theme:1代表默认样式,theme:2代表深色主题样式。 1.首先定义一个主题文件 theme.js,定义两个主题样式 // 主要是切换菜单栏和菜单头部主题的设计,整体主题样式切…

JavaScript系列——正则表达式

文章目录 需求场景正则表达式的定义创建正则表达式通过 / 表示式/ 创建通过构造函数创建 编写一个正则表达式的模式使用简单模式使用特殊字符常用特殊字符列表特殊字符组和范围 正则表达式使用代码演示 常用示例验证手机号码合法性 小结 需求场景 在前端开发领域,在…

MVCC 并发控制原理-源码解析(非常详细)

基础概念 并发事务带来的问题 1)脏读:一个事务读取到另一个事务更新但还未提交的数据,如果另一个事务出现回滚或者进一步更新,则会出现问题。 2)不可重复读:在一个事务中两次次读取同一个数据时&#xff0c…

数字化制造安全防线:迅软DSE助力通用设备企业终端安全卫士

客户简要介绍 某公司是一家主要生产新型激光打印机、喷墨打印机、其它打印机、精密多功能机、传真机等办公自动化用品的企业。公司与顾客建立长期的信赖忠诚关系”的方针,逐步完善公司的各项运营,不断扩充市场前景。产品除国内销售外,还销往…

uni-app模版(扩展插件)

锋哥原创的uni-app视频教程: 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中...共计23条视频,包括:第1讲 uni…

python统计分析——直方图(plt.hist)

使用matplotlib.pyplot.hist()函数绘制直方图 from matplotlib.pyplot as pltdata_setnp.array([2,3,3,4,4,4,4,5,5,6]) plt.hist(fish_data) 下面介绍plt.hist()函数中常用的几个重要参数(参数等号后为默认设置): (1&#xff0…

WebStorm 创建一个Vue项目(1)

一、下载并安装WebStorm 步骤一 步骤二 选择激活方式 激活码: I2A0QUY8VU-eyJsaWNlbnNlSWQiOiJJMkEwUVVZOFZVIiwibGljZW5zZWVOYW1lIjoiVU5JVkVSU0lEQURFIEVTVEFEVUFMIERFIENBTVBJTkFTIiwiYXNzaWduZWVOYW1lIjoiVGFvYmFv77yaSkVU5YWo5a625qG25rAIOa0uW3peS9nOWup…

[Angular] 笔记 16:模板驱动表单 - 选择框与选项

油管视频: Select & Option (Template Driven Forms) Select & Option 在 pokemon.ts 中新增 interface: export interface Pokemon {id: number;name: string;type: string;isCool: boolean;isStylish: boolean;acceptTerms: boolean; }// new interface…

从0搭建github.io网页

点击跳转到🔗我的博客文章目录 从0搭建github.io网页 文章目录 从0搭建github.io网页1.成果展示1.1 网址和源码1.2 页面展示 2.new对象2.1 创建仓库 3.github.io仓库的初始化3.1 千里之行,始于足下3.2 _config.yml3.3 一点杂活 4.PerCheung.github.io.p…

工业4G 物联网网关——机房动环监控系统应用方案介绍

机房动环监控系统是什么?机房动环监控系统的全称为机房动力环境监控系统,是一套安装在机房内的监控系统,可以对分散在机房各处的独立动力设备、环境和安防进行实时监测,统计和分析处理相关数据,第一时间侦测到故障发生…

MyBatis学习一:快速入门

前言 公司要求没办法,前端也要了解一下后端知识,这里记录一下自己的学习 学习教程:黑马mybatis教程全套视频教程,2天Mybatis框架从入门到精通 文档: https://mybatis.net.cn/index.html MyBatis 快速入门&#xf…

回顾 2023,展望 2024

by zhengkai.blog.csdn.net 项目与心得 今年最大的项目和心得,非GCP莫属,作为全球顶尖的云平台, GCP有他的优势,也有很多难用的地方。但是作为当时的一个strategic solution,我们的印度本地化项目必须使用GCP&#xf…

非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (实例篇 V)

Title: 非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (实例篇 V) 姊妹博文 非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (I) 非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (II) 非线性最小二乘问题的数值方法 —— 从牛顿…

Docker 从入门到实践:Docker介绍

前言 在当今的软件开发和部署领域,Docker已经成为了一个不可或缺的工具。Docker以其轻量级、可移植性和标准化等特点,使得应用程序的部署和管理变得前所未有的简单。无论您是一名开发者、系统管理员,还是IT架构师,理解并掌握Dock…

CSS 纵向底部往上动画

<template><div class"container" mouseenter"startAnimation" mouseleave"stopAnimation"><!-- 旋方块 --><div class"box" :class"{ scale-up-ver-bottom: isAnimating }"><!-- 元素内容 --&g…

c++_STL容器总结

STL容器总结 1.STL的基本概念1.2STL的六大组件 2.string类2.1string的基本概念2.2string容器常用操作 3.vector容器3.1vector容器基本概述 4.deque容器4.1deque容器的基本概念4.2deque容器的实现原理4.3deque常用API 5. stack容器5.2stack常用API 6.queue容器6.1 queue 容器基本…

electron进程通信之预加载脚本和渲染进程对主进程通信

主进程和预加载脚本通信 主进程 mian,js 和预加载脚本preload.js,在主进程中创建预加载脚本, const createWindow () > {// Create the browser window.const mainWindow new BrowserWindow({width: 300,height: 300,// 指定预加载脚本webPreferences: {preload: path.j…

dns主从搭建测试

一、DNS的介绍 1、DNS&#xff1a;Domain Name System&#xff0c;域名系统。将主机名解析为IP地址的过程&#xff0c;完成从域名到主机识别ip地址之间的转换&#xff0c;如&#xff1a;www.baidu.com, 其中 www为主机名&#xff0c;baidu.com为域名。 2、DNS无论是走TCP,还是走…

EBDP:解锁大数据的奥秘✨

大数据时代已经来临&#xff0c;你是否也想掌握这门“显学”&#xff1f;&#x1f31f; EBDP&#xff0c;这个让众多专业人士趋之若鹜的认证&#xff0c;究竟有何魅力&#xff1f;今天就带你一探究竟&#xff01; &#x1f31f;EBDP&#xff1a;大数据的“敲门砖”&#x1faa…