基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。本文基于YOLOv8深度学习框架,通过28079张图片,训练了一个进行人脸面部表情识别的检测模型,可用于检测7种不同的人物表情。并基于此模型开发了一款带UI界面的人脸面部表情识别系统,可用于实时检测场景中的人物面部表情,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 第一步:人脸位置检测
    • 第二步:人脸表情识别
      • 1. 数据集准备与训练
      • 2.模型训练
      • 3. 训练结果评估
      • 4. 利用模型进行表情识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。

在人机交互中,面部表情系统可以使计算机更加智能化,能够理解和响应用户的情感状态,从而提供更加个性化和富有同理心的服务。例如,在教育领域,该技术能够识别学生的情绪变化,帮助教师调整教学方式以提高学生的学习效率;在心理健康领域,它可以作为情绪监测工具,帮助医生评估患者情绪状态,辅助诊断和治疗;在自动驾驶系统中,通过监测驾驶员的表情和状态,可以有效预防疲劳或注意力不集中驾驶带来的风险。
此外,人脸面部表情识别技术在市场研究和用户体验设计中也极为有用,能够识别消费者在看到某个产品或广告时的真实情绪反应,从而帮助企业更好地了解消费者需求,优化产品设计和营销策略。在智能家居和安全监控系统中,结合情绪识别可以提供更加人性化的服务,如根据用户的情绪状态调整室内的灯光、音乐等环境设置,或是及时警觉异常情绪状态来预防潜在风险。除此之外,面部表情识别技术还广泛应用于娱乐产业,如视频游戏和虚拟现实中,以提供更加沉浸和互动的用户体验。
综上所述,人脸面部表情识别技术开启了新一代人机交互的大门,它的应用场景广泛,从提高商业价值到增进人类福祉,这项技术的发展极具潜力并正在逐渐改变我们的生活与工作方式。

博主通过搜集不同种类的人脸表情的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人脸面部表情识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种不同人物表情识别,表情分别为:['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];
2. 支持图片、视频及摄像头进行人脸表情检测;
3. 界面可实时显示表情结果置信度各表情概率值等信息;

(1)图片检测演示

点击打开图片图标,选择需要检测的图片,会显示检测结果,同时会将7种表情的概率值显示在右方。操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。
注:1.右侧目标默认显示置信度最大一个目标。
单个图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

本文的人脸表情识别,主要分为两步。第一步:检测人脸位置第二步:将人脸位置截取出来,作为输入传入到使用YOLOv8训练的表情分类模型,从而得到表情识别的结果。

第一步:人脸位置检测

关于人脸位置检测的方法有很多,比如:opencv的dilb库,face_recognition,insightface,mediapipe,deepface等都可以进行人脸位置检测。因为本文主要是对人脸面部表情进行识别,重点实现的是第二部分的表情识别部分。因此对于第一步,本文直接使用的是通过yolov8官方训练好的人脸检测模型yolov8n-face.pt,来进行人脸位置检测,该模型是通过人脸目标数据集训练而来,精度较高。
具体使用方法如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
if __name__ == '__main__':# 所需加载的模型目录path = 'models/yolov8n-face.pt'# 需要检测的图片地址img_path = "TestFiles/test3.jpg"model = YOLO(path, task='detect')# 检测图片results = model(img_path,conf=0.5)res = results[0].boxes.xyxy.tolist()print(res)img = cv2.imread(img_path)for each in res:# 开始的y坐标:结束的y坐标,开始x:结束的xx1,y1,x2,y2 = each[:4]x1 = int(x1)y1 = int(y1)x2 = int(x2)y2 = int(y2)cv2.rectangle(img, (x1, y1), (x2, y2), (50, 50, 250), 3)cv2.imshow('face_detection', img)cv2.waitKey(0)

在这里插入图片描述
以上结果可以发现,该模型能够很好的检测人脸位置。下面我们需要使用yolov8训练一个表情识别的模型,对于检测到的人脸进行表情的识别判断

第二步:人脸表情识别

1. 数据集准备与训练

本文使用的数据集为人脸面部表情分类数据集,包含7种不同的人脸表情,分别是:['生气','厌恶','害怕','高兴','中立','伤心','惊讶']。一共包含35257张图片,其中训练集包含28079张图片,测试集包含7178张图片。部分数据集及类别信息如下。下面我们将使用该数据集训练一个表情分类模型,用于对截取后的人脸部分进行表情分类,从而达到进行表情识别的目的。
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入ExpressionData目录下。
在这里插入图片描述

2.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':model.train(data='datasets/ExpressionData', epochs=300, batch=4)# results = model.val()# # results = model("自己的验证图片")

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
在这里插入图片描述
在这里插入图片描述

4. 利用模型进行表情识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2import Config
import detect_tools as tools
import numpy as npif __name__ == '__main__':img_path = 'TestFiles/12.png'# 所需加载的模型目录face_model_path = 'models/yolov8n-face.pt'expression_model_path = 'models/expression_cls.pt'# 人脸检测模型face_model = YOLO(face_model_path, task='detect')# 表情识别模型expression_model = YOLO(expression_model_path, task='classify')cv_img = tools.img_cvread(img_path)face_cvimg, faces, locations = face_detect(cv_img, face_model)if faces is not None:for i in range(len(faces)):left, top, right, bottom = locations[i]# 彩色图片变灰度图img = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)# 灰度图变3通道img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)rec_res = expression_model(img)probs = rec_res[0].probs.data.tolist()num = np.argmax(probs)label = Config.names[num]face_cvimg = cv2.putText(face_cvimg, label, ((left, top - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 250),2, cv2.LINE_AA)cv2.imshow('yolov8_detections',face_cvimg)cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款人脸面部表情识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的人脸面部表情识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/229594.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

10 个值得收藏的顶级手机数据恢复软件【2024年最新】

手机数据恢复,不要担心,今天就给大家分享10款数据恢复软件! 现代人的手机中存储了许多重要数据,如照片、视频、消息、联系人等文件,如果手机损坏或数据丢失,这是一件非常烦恼的事情。此时,一款好…

解决jenkins的Exec command命令不生效,或者执行停不下来的问题

Jenkins构建完后将war包通过 Publish Over SSH 的插件发布到服务器上,在服务器上执行脚本时,脚本中的 nohup 命令无法执行,并不生效,我配置的Exec command命令是后台启动一个war包,并输出日志文件。 nohup java -jar /…

nginx源码分析-4

这一章内容讲述nginx的模块化。 ngx_module_t:一个结构体,用于描述nginx中的各个模块,其中包括核心模块、HTTP模块、事件模块等。这个结构体包含了一些模块的关键信息和回调函数,以便nginx在运行时能够正确地加载和管理这些模块。…

《动手学深度学习》学习笔记 第5章 深度学习计算

本系列为《动手学深度学习》学习笔记 书籍链接:动手学深度学习 笔记是从第四章开始,前面三章为基础知道,有需要的可以自己去看看 关于本系列笔记: 书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很…

算法学习系列(十四):并查集

目录 引言一、并查集概念二、并查集模板三、例题1.合并集合2.连通块中点的数量 引言 这个并查集以代码短小并且精悍的特点,在算法竞赛和面试中特别容易出,对于面试而言,肯定不会让你去写一两百行的代码,一般出的都是那种比较短的…

[GKCTF 2020]ez三剑客-eztypecho

[GKCTF 2020]ez三剑客-eztypecho 考点:Typecho反序列化漏洞 打开题目,发现是typecho的CMS 尝试跟着创建数据库发现不行,那么就搜搜此版本的相关信息发现存在反序列化漏洞 参考文章 跟着该文章分析来,首先找到install.php&#xf…

Unable to connect to Redis server

报错内容: Exception in thread "main" org.redisson.client.RedisConnectionException: java.util.concurrent.ExecutionException: org.redisson.client.RedisConnectionException: Unable to connect to Redis server: 175.24.186.230/175.24.186.230…

使用idea构建父子类springboot项目教程

第一步创建一个父类java项目(最外层java项目) 1.点击File 然后点击new 再点击Project 2.点击Maven 配置Java版本 再点击next 3.GroupId:包结构,ArtifactId:项目名称,填写完,点击next 4.点击…

IOS - 手机安装包 ipa 常见几种方式

安装 ipa 包的方法有很多中,可以通过不同的软件安装,本文只列出了常用的几种,做个简单的归纳整理 1、iTunes 安装 数据线连接手机之后,会自动连接iTunes,(第一次连接的时候会提示是否信任此电脑&#xff0…

基于springboot的火锅店管理系统设计与实现

🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅一 、设计说明 1.1选题动因 当前…

打造绿色饲养链:河南恩珅德农业引领可持续农业发

在河南恩珅德农业的引领下,可持续农业的概念得到了更进一步的实践和推动。其致力于打造绿色饲养链的努力,旨在通过创新的理念和科技手段,实现饲养业的可持续发展。本文将深入探讨河南恩珅德农业是如何引领可持续农业发展,打造绿色…

Selenium教程06:单选框+多选框+下拉框组件的示例练习

1.Radio单选框的示例用法&#xff0c;通过网页元素class和type属性多条件共同定位元素&#xff0c;模拟依次选中Android&#xff0c;Apple&#xff0c;Windows。 网页元素结构 <input type"radio" class"ivu-radio-input" name"ivuRadioGroup_170…

Flink-【时间语义、窗口、水位线】

1. 时间语义 1.1 事件时间&#xff1a;数据产生的事件&#xff08;机器时间&#xff09;&#xff1b; 1.2 处理时间&#xff1a;数据处理的时间&#xff08;系统时间&#xff09;。 &#x1f330;&#xff1a;可乐 可乐的生产日期 事件时间&#xff08;可乐产生的时间&…

240101-5步MacOS自带软件无损快速导出iPhone照片

硬件准备&#xff1a; iphone手机Mac电脑数据线 操作步骤&#xff1a; Step 1: 找到并打开MacOS自带的图像捕捉 Step 2: 通过数据线将iphone与电脑连接Step 3&#xff1a;iphone与电脑提示“是否授权“&#xff1f; >>> “是“Step 4&#xff1a;左上角选择自己的设…

石头剪刀布游戏 - 华为OD统一考试

OD统一考试 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 石头剪刀布游戏有 3 种出拳形状: 石头、剪刀、布。分别用字母 A,B,C 表示游戏规则&#xff1a; 出拳形状之间的胜负规则如下: A>B; B>C; C>A&#xff1b; 左边一个字母&#xff0c;…

04.MySQL的基本操作

MySQL的基本操作 一、连接和断开MySQL服务器1、通过系统服务器启动、停止MySQL服务器2、通过命令提示符&#xff08;DOS&#xff09;启动、停止MySQL服务器2.1 启动 MySQL 服务器&#xff1a;2.2 停止 MySQL 服务器&#xff1a;2.3 登录和退出mysql 二、创建和管理数据库2.1 创…

东信免驱系列身份证阅读器串口通讯协议解析示例,适用于单片机、ARM等系统开发集成使用

完整的一次读卡流程包括&#xff1a; 身份证寻卡 > 身份证选卡 > 身份证读卡&#xff0c;三个步骤 缺一不可&#xff08;见通讯协议&#xff09;。 寻卡&#xff1a;EA EB EC ED 04 00 B0 B4 BB 返回&#xff1a;EA EB EC ED 05 00 00 B0 B5 BB 选卡&#xff1a;EA …

【SpringBoot3】1.SpringBoot入门的第一个完整小项目(新手保姆版+教会打包)

目录 1 SpringBoot简单介绍1.1 SpringBoot是什么1.2 主要优点1.3 术语1.3.1 starter&#xff08;场景启动器&#xff09; 1.4 官方文档 2 环境说明3 实现代码3.1 新建工程与模块3.2 加入依赖3.3 主程序文件3.4 业务代码3.5 运行测试3.6 部署打包3.7 命令行运行 1 SpringBoot简单…

【Jasypt】SpringBoot配置文件加密

1、加密介绍 在yml配置文件中会存在一些敏感数据&#xff0c;比如用户名&#xff0c;密码&#xff0c;第三方应用的密钥等等。这些信息是以明文的形式出现在文件中&#xff0c;存在较大安全隐患。Jasypt&#xff08;Java Simplified Encryption&#xff09;是一个Java库&#…

小红书、抖音、视频号下载工具:随心管理个人作品集 | 开源日报 No.134

karanpratapsingh/system-design Stars: 20.6k License: NOASSERTION 这个项目是关于系统设计的。它提供了有关系统设计的课程内容&#xff0c;包括 IP、OSI 模型、TCP 和 UDP 等主题。该项目的核心优势和特点如下&#xff1a; 提供全面而高效的系统架构定义。从基础设施到数…