hugging face---transformers包

一、前言

不同于计算机视觉的百花齐放,不同网络适用不同情况,NLP则由Transformer一统天下。transformer是2017年提出的一种基于自注意力机制的神经网络架构,transformers库是hugging face社区创造的一个py库,通过该库可以实现统一的接口去下载调用社区中的模型,并进行微调等等操作。 (没梯子也可以手动下载)

二、流程

①分词

1、含义

神经网络只能处理数字,因此必须将文本转换为数值(如词表索引)。先利用分词器,将连续的文本拆分为离散的单元(Token),现在一般直接调用transformers库的分词器完成分词即可。

在自然语言处理(NLP)中,Token(标记/词元) 是文本处理的最小单位,可以理解为将一段文本“拆解”后的基本元素。它的具体含义取决于分词策略(Tokenization),以下是详细解释:


1. Token 的常见形式

  • 单词:例如英文中按空格切分("hello""world")。
  • 子词(Subword):将长词或罕见词拆分为更小的片段(如 "unhappiness" → "un" + "##happiness")。
  • 字符:单个字母或汉字(如 "A""语")。
  • 标点/符号:例如 ",""?"
  • 特殊标记:模型预定义的符号(如 [CLS][SEP]<pad>)。

2. 为什么需要 Tokenization?

  • 统一输入格式:将文本转换为模型可处理的数值(如 input_ids)。
  • 解决未登录词(OOV):通过子词拆分处理词典外的词汇(例如 "ChatGPT" → "Chat" + "G" + "PT")。
  • 跨语言兼容:适用于无空格语言(如中文、日文)或黏着语(如土耳其语)。

3. 不同分词策略的 Token 示例

(1) 英文文本

  • 原始句子"Don't hesitate to try!"
  • 分词结果(不同策略):
    • Word-based(按单词):["Don't", "hesitate", "to", "try", "!"]
    • Subword(BERT 风格)["Don", "'", "t", "hesitate", "to", "try", "!"]
    • Character-based(按字符):["D", "o", "n", "'", "t", "h", "e", ...]

(2) 中文文本

  • 原始句子"深度学习很有趣!"
  • 分词结果(不同策略):
    • 按词语["深度", "学习", "很", "有趣", "!"]
    • 按子词(SentencePiece)["深", "度", "学", "习", "很", "有", "趣", "!"]
    • 按字符["深", "度", "学", "习", "很", "有", "趣", "!"]

4. Token 在模型中的使用

  • 数值化映射:每个 Token 会被转换为词典中的索引(ID)。
    例如:"hello" → 1234"!" → 99
  • 输入格式:文本最终转换为模型所需的 input_ids,例如:
    "Hello world!" → [101, 1234, 2137, 999, 102](BERT 风格)。

5. 不同模型的分词器对比

模型/分词器分词策略Token 示例
BERTWordPiece["hello", "##world", "!"]
GPT-3Byte-Pair (BPE)["hello", " world", "!"]
T5SentencePiece["▁Hello", "▁world", "!"]
中文BERT按字切分["深", "度", "学", "习"]

6. 关键点总结

  • Token 是文本的原子单位:拆解文本的方式取决于任务需求和语言特性。
  • 子词分词是主流:平衡词典大小与未登录词问题(如 "ChatGPT" 拆为 ["Chat", "G", "PT"])。
  • Token 与模型强相关:BERT、GPT 等模型的分词器需配套使用。

如果你正在使用 Transformers 库,可以这样体验分词过程:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 输出:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 输出:数值化的 Token ID 列

分词后的Token往往会将每个Token映射到唯一一个ID,因为计算机只能处理数值,无法直接理解字符、词语或句子,可以理解为有一个超级大的字典,足以容纳所有字符,每个Token都可以对应唯一ID,训练模型是通过Token的ID进行的。(在对一个句子分词和映射时,可能会加入一些分词符,所以打印映射结果可能会比分词后的字符数多)

2、分词器(Tokenizer)

(1)AutoTokenizer

前面说过,不同的模型可能会使用不同的分词策略,所以如果使用不同的模型,就需要加载不同的分词器以使用不同的分词策略,transformers提供了AutoTokenizer,可以自动实现判断其分词策略,只需要提供给它对应的模型名即可。

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 分词结果:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 数值化的 Token ID 列表

(2)分词器相关参数

  • tokenizer.tokenize():轻量级工具,仅用于分词调试。
  • tokenizer():一站式解决方案,生成模型所需的完整输入。
    根据需求选择合适的方法:若直接调用模型,永远优先使用 tokenizer();若需中间结果(如分析分词策略),再用 tokenizer.tokenize()
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
raw_inputs = ["Don't hesitate to try!","I love eat rice!"]
tokens = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors='pt')
input_ids = tokenizer.encode(raw_inputs)
print(tokens)
print(input_ids)

# out

{'input_ids': tensor([[  101,  2123,  1005,  1056, 16390,  2000,  3046,   999,   102],
        [  101,  1045,  2293,  4521,  5785,   999,   102,     0,     0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 0, 0]])}
[101, 2123, 1005, 1056, 16390, 2000, 3046, 999, 102, 1045, 2293, 4521, 5785, 999, 102] 

  • padding:填充,以拥有最长Token的那句话为基准,为其他不够长的进行填充,以使处理后的TokenID列表长度一致。
  • truncation:截断,将输入文本控制在模型能接受的最大长度内,如Transformer 的注意力机制:计算复杂度随输入长度呈平方级增长(O(n²)),模型预训练时固定了最大长度(如 BERT 为 512 Tokens)
  • attention_mask:用于告诉模型在处理输入时应该“关注”哪些位置,忽略哪些位置。它的核心作用是解决文本长度不一致和填充(Padding)带来的问题,因为在padding时会对较短Token的句子做填充,填充部分是无效输入,如果没有 attention_mask,模型会误认为填充的 0 是有效输入,导致计算错误。
  • return_tensors(返回张量格式):指定返回数据的框架格式。常用值

    • "pt":返回 PyTorch 张量。
    • "tf":返回 TensorFlow 张量。
    • "np":返回 NumPy 数组。
    • None:返回列表(默认)。

3、模型的缓存与加载

from transformers import AutoModel, AutoTokenizer# 下载模型和分词器到 cache_dir/bert
model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="./bert")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

 AutoModel用于找到并缓存或加载对应模型,cache_dir可指定缓存路径,默认会放在C盘的.cache/huggingface目录下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/22994.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI大模型学习(四): LangChain(三)

Langchain构建代理 语言模型本身无法执行动作,他们只能输出文本,代理是使用大型语言模型(LLM)作为推理引擎来确定要执行的操作以及这些操作的输入应该是什么,然后这些操作的结果可以反馈到代理中,代理将决定是否需要更多的操作,或者是否可以结束 例如:我们想要查询现在北京的…

企业知识管理平台重构数字时代知识体系与智能服务网络

内容概要 现代企业知识管理平台的演进呈现出全生命周期管理与智能服务网络构建的双重特征。通过四库体系&#xff08;知识采集库、加工库、应用库、评估库&#xff09;的协同运作&#xff0c;该系统实现了从知识沉淀、结构化处理到价值释放的完整闭环。其中&#xff0c;知识图…

(二)趣学设计模式 之 工厂方法模式!

目录 一、 啥是工厂方法模式&#xff1f;二、 为什么要用工厂方法模式&#xff1f;三、 工厂方法模式怎么实现&#xff1f;四、 工厂方法模式的应用场景五、 工厂方法模式的优点和缺点六、 总结 &#x1f31f;我的其他文章也讲解的比较有趣&#x1f601;&#xff0c;如果喜欢博…

详细介绍嵌入式硬件设计

嵌入式硬件设计详解 一、嵌入式硬件设计核心概念 嵌入式硬件设计是针对特定应用场景&#xff0c;将处理器、存储器、外设接口等电子元件集成到电路板上&#xff0c;实现特定功能的系统开发过程。其核心目标是 高可靠性、低功耗、小体积 和 成本优化。 二、设计流程与关键步骤 …

goredis常见基础命令

基本操作 //删除键 exists,err: rdb.Exists(ctx,"key").Result() if err!nil{panic(err) } if exists>0{err rdb.Del(ctx,"key").Err()if err!nil{panic(err)} }string类型 //设置一个键值对 //0表示没有过期时间 err:rdb.Set(ctx,"key1",…

微服务环境搭建架构介绍(附超清图解源代码)

微服务介绍 系统架构演变 随着互联网的发展&#xff0c;网站应用的规模也在不断的扩大&#xff0c;进而导致系统架构也在不断的进行变化。 从互联网早起到现在&#xff0c;系统架构大体经历了下面几个过程: 单体应用架构--->垂直应用架构--->分布 式架构--->SOA架构…

Java-01-源码篇-04集合-05-ConcurrentHashMap(1)

1.1 加载因子 加载因子&#xff08;Load Factor&#xff09;是用来决定什么时候需要扩容的一个参数。具体来说&#xff0c;加载因子 当前元素数量 / 桶的数量&#xff0c;当某个桶的元素个数超过了 桶的数量 加载因子 时&#xff0c;就会触发扩容。 我们都知道 ConcurrentHas…

一文详解U盘启动Legacy/UEFI方式以及GPT/MBR关系

对于装系统的老手而说一直想研究一下装系统的原理&#xff0c;以及面对一些问题时的解决思路&#xff0c;故对以前的方法进行原理上的解释&#xff0c;主要想理解其底层原理。 引导模式 MBR分区可以同时支持UEFI和Legacy引导&#xff0c;我们可以看一下微pe制作的启动盘&#…

【多线程-第三天-NSOperation的练习-tableView异步下载网络图片-下载操作缓存池 Objective-C语言】

一、下载操作缓存池 1.下面我们来看操作缓存池,我们先演示一下问题,看看为什么要加这么一个操作缓存池,什么是操作缓存池,不用管呢,我们先来看啊,首先有什么问题, 看这个问题之前,我这儿写一个touch,点击屏幕的时候调用, 额,不能点击屏幕啊,因为现在屏幕点不着,我…

Windows 中的启动项如何打开?管理电脑启动程序的三种方法

在日常使用电脑时&#xff0c;我们经常会发现一些应用程序在开机时自动启动&#xff0c;这不仅会拖慢系统的启动速度&#xff0c;还可能占用不必要的系统资源。幸运的是&#xff0c;通过几个简单的步骤&#xff0c;你可以轻松管理这些开机自启的应用程序。接下来&#xff0c;我…

具备智能广告拦截、个性化定制的便捷网页浏览器

软件介绍 今天要给大家介绍一款源自俄罗斯的国民级软件&#xff0c;它来自俄罗斯最大互联网公司之一的 Yandex。这家公司不仅有搜索引擎业务&#xff0c;还打造出诸多热门软件&#xff0c;其中就有我们要讲的这款网页浏览器。它由 Yandex 公司依托 Chromium 开源项目开发&…

LangChain-基础(prompts、序列化、流式输出、自定义输出)

LangChain-基础 我们现在使用的大模型训练数据都是基于历史数据训练出来的&#xff0c;它们都无法处理一些实时性的问题或者一些在训练时为训练到的一些问题&#xff0c;解决这个问题有2种解决方案 基于现有的大模型上进行微调&#xff0c;使得它能适应这些问题&#xff08;本…

119. 杨辉三角 II

给定一个非负索引 rowIndex&#xff0c;返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0 输出: [1]示例 3: 输入: rowIndex 1 输出: [1,1]提示…

Unity Android SDK 升级、安装 build-tools、platform-tools

Unity Android SDK 升级、安装 build-tools、platform-tools 通过 Unity Hub 安装的 Android SDK 需要下载 特定版本的 build-tools、platform-tools 如何操作&#xff1f; 以 Unity 2022.3.26f1 为例&#xff0c;打开安装目录&#xff0c;找到如下目录 2022.3.26f1\Editor\…

网络空间安全(3)web渗透测试学习框架

前言 Web渗透测试是一种安全评估方法&#xff0c;旨在通过模拟黑客攻击来检测Web应用程序中的安全漏洞。 一、学习基础 在学习Web渗透测试之前&#xff0c;需要掌握一些基础知识&#xff0c;包括计算机网络、Web开发技术&#xff08;如HTML、JavaScript、PHP等&#xff09;、数…

人工智能之自动驾驶技术体系

自动驾驶技术体系 自动驾驶技术是人工智能在交通领域的重要应用&#xff0c;旨在通过计算机视觉、传感器融合、路径规划等技术实现车辆的自主驾驶。自动驾驶不仅能够提高交通效率&#xff0c;还能减少交通事故和环境污染。本文将深入探讨自动驾驶的技术体系&#xff0c;包括感…

25会计研究生复试面试问题汇总 会计专业知识问题很全! 会计复试全流程攻略 会计考研复试真题汇总

宝子们&#xff0c;会计考研复试快到了&#xff0c;是不是有点慌&#xff1f;别怕&#xff01;今天学姐给你们支招&#xff0c;手把手教你搞定复试面试&#xff0c;直接冲上岸&#xff01;快来看看怎么准备吧&#xff0c;时间紧直接背第三部分的面试题&#xff01; 目录 一、复…

本地化部署 DeepSeek:从零到一的完整指南

本地化部署 DeepSeek&#xff1a;从零到一的完整指南 个人主页&#xff1a;顾漂亮 文章专栏&#xff1a;AI学习 目录 引言什么是 DeepSeek&#xff1f;为什么选择本地化部署&#xff1f;DeepSeek 本地化部署的前期准备 硬件需求软件需求环境配置 DeepSeek 本地化部署步骤 步骤…

【深度学习】Unet的基础介绍

U-Net是一种用于图像分割的深度学习模型&#xff0c;特别适合医学影像和其他需要分割细节的任务。如图&#xff1a; Unet论文原文 为什么叫U-Net&#xff1f; U-Net的结构像字母“U”&#xff0c;所以得名。它的结构由两个主要部分组成&#xff1a; 下采样&#xff08;编码…

【学习笔记】Cadence电子设计全流程(二)原理图库的创建与设计(8-15)

【学习笔记】Cadence电子设计全流程&#xff08;二&#xff09;原理图库的创建与设计&#xff08;下&#xff09; 2.8 Cadence 软件自带元件库2.9 原理图元器件关联PCB2.10 原理图元器件库的移植2.11 已有原理图输出元器件库2.12 原理图设计中调用元器件库2.13 原理图元器件库关…