imgaug库指南(五):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 中值模糊/滤波


中值模糊/滤波(AverageBlur)

功能介绍

iaa.MedianBlur是imgaug库中的一个方法,用于对图像进行中值模糊。中值模糊是一种非线性滤波方法,主要用于消除图像中的噪声。对于一些特定的噪声类型,如盐与胡椒噪声,中值模糊通常能取得较好的效果。

语法

iaa.MedianBlur方法的基本语法如下:

import imgaug.augmenters as iaa
aug = iaa.MedianBlur(k=(3, 11))
  • k为整数,那么卷积核的核大小为k;
  • k为包含两个整数的元组 (a, b),核大小将从 [a…b] 区间中随机采样一个奇数;
  • k为包含 两个整数元组 的元组 ((a, b), (c, d)),则每张图像将从 [a…b] 区间中采样随机核高度,从 [c…d] 区间中采样随机核宽度;

示例代码

  1. 使用不同卷积核大小
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建均值模糊增强器
aug1 = iaa.MedianBlur(k=3)
aug2 = iaa.MedianBlur(k=7)
aug3 = iaa.MedianBlur(k=15)# 对图像进行均值模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及中值模糊/滤波结果可视化

  1. 利用中值滤波清除椒盐噪声
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)## 对lena图像添加椒盐噪声
# 10%像素添加椒盐噪声
aug_noise1 = iaa.SaltAndPepper(0.1, per_channel=True)
# 30%像素添加椒盐噪声
aug_noise2 = iaa.SaltAndPepper(0.3, per_channel=True)
# 50%像素添加椒盐噪声
aug_noise3 = iaa.SaltAndPepper(0.5, per_channel=True)# 创建均值模糊增强器
aug1 = iaa.MedianBlur(k=3)# 对图像进行均值模糊处理
noised_image1 = aug_noise1(image=image)
noised_image2 = aug_noise2(image=image)
noised_image3 = aug_noise3(image=image)denoised_image1 = aug1(image=noised_image1)
denoised_image2 = aug1(image=noised_image2)
denoised_image3 = aug1(image=noised_image3)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
axes[0][0].imshow(noised_image1)
axes[0][0].set_title("Noised Image1")
axes[0][1].imshow(noised_image2)
axes[0][1].set_title("Noised Image2")
axes[0][2].imshow(noised_image3)
axes[0][2].set_title("Noised Image3")
axes[1][0].imshow(denoised_image1)
axes[1][0].set_title("Denoised Image1")
axes[1][1].imshow(denoised_image2)
axes[1][1].set_title("Denoised Image2")
axes[1][2].imshow(denoised_image3)
axes[1][2].set_title("Denoised Image3")
plt.show()

运行结果如下:

图2 椒盐噪声图像及其去噪图像可视化

注意事项

  1. 核大小的选择:中值模糊的效果很大程度上取决于所选择的核大小。在大多数情况下,选择奇数大小的核(如3, 5, 7等)是比较好的。核大小的选择需要权衡模糊程度和细节保留。
  2. 计算效率:对于较大的图像,中值模糊可能会比较耗时,因为它需要对每个像素周围的区域进行排序。
  3. 与其他增强器的结合使用imgaug库提供了许多其他图像增强方法,可以与中值模糊结合使用以获得更丰富的效果。例如,可以与亮度调整、对比度调整、噪声添加等增强器结合使用。
  4. 结果的可重复性:由于中值模糊是非线性操作,每次应用可能会产生稍微不同的结果。为了确保结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.MedianBlurimgaug库中一个非常有用的中值模糊增强器。它可以有效地消除图像中的椒盐噪声,并且在与其他增强器结合使用时,可以创造出丰富多样的图像效果。然而,使用时需要注意核大小的选择、计算效率、与其他增强器的结合使用以及结果的重复性等问题。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/232249.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机上连网络转接app,电脑连接手机,共用网络转接app的办法

方法一,(不推荐) 因为太简单了所以写一下 电脑安装MuMu模拟器,之后安装网络转接app,这个模拟器设置了从电脑上安装app和,安卓与电脑同步文件夹功能,实现文件共享。所以直接用就可以了。 方法二…

CP_AutoSar目录

目录 一、RTE二、模式和状态管理三、BSW四、工具链相关五、杂项六、优化相关 一些笔记和日常记录。有部分未包含在此目录中。 一、RTE [AutoSar]基础部分 RTE 01 介绍 [AutoSar]基础部分 RTE 02 S/R Port 显式/隐式 [AutoSar]基础部分 RTE 03 C/S Port 同步/异步 [AutoSar]基…

5.vue学习笔记(数组变化的侦测+计算属性+Class绑定)

文章目录 1.数组变化的侦测1.1.变更方法1.2.替换一个数组 2.计算属性计算属性缓存vs方法 3.Class绑定3.1.绑定对象3.2.多个对象的绑定形式3.3.绑定数组3.4.数组与对象 1.数组变化的侦测 1.1.变更方法 vue能够侦听响应式数组的变更方法,并在它们被调用时出发相关的…

私有云平台搭建openstack和ceph结合搭建手册

OpenStack与云计算 什么是云? 如何正确理解云,可以从以下几个方面。 云的构成。 用户:对用户而言是透明无感知的,不用关心底层构成,只需要知道利用云完成自己任务即可。 云提供商:对云资产管理和运维。 云…

深度学习|3.6 激活函数 3.7 为什么需要非线性激活函数

激活函数 主要有sigmoid函数、tanh函数、relu函数和leaky relu函数 tanh函数相比sigmoid函数是具有优势的,因为tanh函数使得输出值的平均值为0,而sigmoid函数使得输出值的平均值为1/2,对下一层来说tanh输出的0更好进行处理。 激活函数tanh…

UICollection Compositional Layout全详解

本文字数:8325字 预计阅读时间:45分钟 01 Collection View Layout全详解 UICollectionView在iOS中是构建复杂布局的强大工具。iOS13中引入的 UICollectionViewCompositionalLayout为创建自定义布局提供了全新的可能性。本文将深入探讨Compositional Lay…

ES6的默认参数和rest参数

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…

第14课 利用openCV快速数豆豆

除了检测运动,openCV还能做许多有趣且实用的事情。其实openCV和FFmpeg一样都是宝藏开源项目,貌似简单的几行代码功能实现背后其实是复杂的算法在支撑。有志于深入学习的同学可以在入门后进一步研究算法的实现,一定会受益匪浅。 这节课&#…

从零学Java - 接口

Java 接口 文章目录 Java 接口1.接口的语法1.1 与抽象类的区别 2.如何使用接口?2.1 接口的使用规范 3.什么是接口?3.1 常见关系 4.接口的多态性5.面向接口编程5.1 接口回调 6.特殊接口6.1 常量接口6.2 标记接口 7.接口的好处 补充面向对象 七大设计原则 1.接口的语法 接口&a…

数字IC后端实现之Innovus TA-152错误解析(分频generated clock定义错误)

**ERROR: (TA-152): A latency path from the ‘Fall’ edge of the master clock at source pin… Error Code TA-152 在数字IC后端实现innovus中我们经常会看到这类Error,具体信息如下所示。 Error Message **ERROR: (TA-152): A latency path from the ‘Fa…

Linux的基本指令(5)

目录 bc指令 uname指令 压缩解压相关的指令 zip指令 unzip指令 tar打包压缩指令 tar解压解包指令 ​编辑​编辑sz&rz 热键 关机命令 安装:yum install -y 指令 bc指令 bc命令可以很方便的进行浮点运算 Linux中的计算器 uname指令 语法:un…

Python新年烟花代码

Pygame 绘制烟花的基本原理 1,发射阶段:在这一阶段烟花的形状是线性向上,通过设定一组大小不同、颜色不同的点来模拟“向上发射” 的运动运动,运动过程中 5个点被赋予不同大小的加速度,随着时间推移,后面的…

YOLOv5改进 | Neck篇 | 利用Damo-YOLO的RepGFPN改进特征融合层

一、本文介绍 本文给大家带来的改进机制是Damo-YOLO的RepGFPN(重参数化泛化特征金字塔网络),利用其优化YOLOv5的Neck部分,可以在不影响计算量的同时大幅度涨点(亲测在小目标和大目标检测的数据集上效果均表现良好涨点幅度超级高!)。RepGFPN不同于以往提出的改进模块,其…

计算机毕业设计选题分享-SSM律师事务所业务管理系统01664(赠送源码数据库)JAVA、PHP,node.js,C++、python,大屏数据可视化等

SSM律师事务所业务管理系统 摘 要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,律师事务所业务管理系统当然也不能排除在外。律师事务所业务管理系统是以实际运用为开发背景…

WIN10-22H2专业版万人装机系统镜像

站长亲自封装的电脑维修人员专用装机系统镜像,系统干净无广告,稳定长效不卡顿,适合电脑维修店用来维修电脑重装系统。此版本是WIN10系统里非常稳定的正式版本之一,适合在维修电脑时重装系统或者大批量装机使用。本次封装镜像使用全…

【漏洞复现】冰峰VPN存在敏感信息泄露漏洞

漏洞描述 冰峰VPN log/system.log模块日志信息泄露漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利…

每日一题——LeetCode1089.复写0

方法一 splice: 通过数组的slice方法,碰到 0就在后面加一个0,最后截取原数组的长度,舍弃后面部分。 但这样做是违反了题目的要求,不要在超过该数组长度的位置写入元素。 var duplicateZeros function(arr) {var le…

脑电范式学习(一):Psychopy安装

脑电范式学习(一):Psychopy安装 1 引言2 Psychopy软件3 安装教程4 花活儿5 总结 1 引言 可能有人会疑惑:为什么要去学Psychopy?Psychopy有什么好的? 首先,要告诉大家这么一个情况:现…

机器学习(四) -- 模型评估(3)

系列文章目录 机器学习(一) -- 概述 机器学习(二) -- 数据预处理(1-3) 机器学习(三) -- 特征工程(1-2) 机器学习(四) -- 模型评估…

zookeeper经典应用场景之分布式锁

1. 什么是分布式锁 在单体的应用开发场景中涉及并发同步的时候,大家往往采用Synchronized(同步)或者其他同一个JVM内Lock机制来解决多线程间的同步问题。在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进…