不同像平面坐标系下的Brown畸变系数互转

不同像平面坐标系下Brown畸变系数转换

u , v u,v u,v为像素为单位的坐标,f为焦距,单位也是像素。

x , y x,y x,y为理想坐标。本文推导两种情况下的Brown畸变系数转换关系:

  1. 相同坐标系定义、不同的坐标单位(像素坐标与归一化坐标)的畸变系数关系
  2. 坐标系原点相同、y轴方向相反的坐标系之间畸变系数关系

像素坐标与归一化坐标的畸变系数的关系推导

像素为单位的畸变计算

使用像素坐标计算畸变值的公式为:

{ d u = u ( K 1 r 2 + K 2 r 4 + K 3 r 6 ) + P 1 ( r 2 + 2 u 2 ) + 2 P 2 u v d v = v ( K 1 r 2 + K 2 r 4 + K 3 r 6 ) + P 2 ( r 2 + 2 v 2 ) + 2 P 1 u v (A) \begin{cases} du = u(K_1 r^2+K_2 r^4+K_3 r^6)+P_1(r^2+2u^2)+2P_2 uv\\ dv = v(K_1 r^2+K_2 r^4+K_3 r^6)+P_2(r^2+2v^2)+2P_1 uv\\ \end{cases}\tag{A} {du=u(K1r2+K2r4+K3r6)+P1(r2+2u2)+2P2uvdv=v(K1r2+K2r4+K3r6)+P2(r2+2v2)+2P1uv(A)

计算机视觉的归一化坐标畸变计算

u , v u,v u,v为像素为单位的坐标,f为焦距,单位也是像素。计算机视觉使用归一化坐标:

{ x = u f y = v f (B) \begin{cases}x=\dfrac{u}{f}\\y=\dfrac{v}{f}\end{cases}\tag{B} x=fuy=fv(B)

计算畸变值的公式为:

{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y d y = y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y (C) \begin{cases} dx=x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy\\ dy=y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy\\ \end{cases}\tag{C} {dx=x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2xydy=y(k1r2+k2r4+k3r6)+p2(r2+2y2)+2p1xy(C)

推导过程

对比(A)(C)两个公式,将(C)式中的x,y按照(B)替换为u,v的表达式,得:
{ d u f = u f ( k 1 R 2 f 2 + k 2 R 4 f 4 + k 3 R 6 f 6 ) + p 1 ( R 2 f 2 + 2 u 2 f 2 ) + 2 p 2 u f v f d v f = v f ( k 1 R 2 f 2 + k 2 R 4 f 4 + k 3 R 6 f 6 ) + p 2 ( R 2 f 2 + 2 v 2 f 2 ) + 2 p 1 u f v f (D) \begin{cases} \dfrac{du}{f}=\dfrac{u}{f}(k_1 \dfrac{R^2}{f^2}+k_2 \dfrac{R^4}{f^4}+k_3 \dfrac{R^6}{f^6})+p_1(\dfrac{R^2}{f^2}+2\dfrac{u^2}{f^2})+2p_2 \dfrac{u}{f}\dfrac{v}{f}\\ \dfrac{dv}{f}=\dfrac{v}{f}(k_1 \dfrac{R^2}{f^2}+k_2 \dfrac{R^4}{f^4}+k_3 \dfrac{R^6}{f^6})+p_2(\dfrac{R^2}{f^2}+2\dfrac{v^2}{f^2})+2p_1 \dfrac{u}{f}\dfrac{v}{f}\\ \end{cases}\tag{D} fdu=fu(k1f2R2+k2f4R4+k3f6R6)+p1(f2R2+2f2u2)+2p2fufvfdv=fv(k1f2R2+k2f4R4+k3f6R6)+p2(f2R2+2f2v2)+2p1fufv(D)
其中, R 2 = u 2 + v 2 R^2=u^2+v^2 R2=u2+v2

整理得:
{ d u f = u f ( k 1 f 2 R 2 + k 2 f 4 R 4 + k 3 f 6 R 6 ) + p 1 f 2 ( R 2 + 2 u 2 ) + 2 p 2 f 2 u v d v f = v f ( k 1 f 2 R 2 + k 2 f 4 R 4 + k 3 f 6 R 6 ) + p 2 f 2 ( R 2 + 2 v 2 ) + 2 p 1 f 2 u v (E) \begin{cases} \dfrac{du}{f}=\dfrac{u}{f}( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_1}{f^2}(R^2+2u^2)+2 \dfrac{p_2}{f^2}uv\\ \dfrac{dv}{f}=\dfrac{v}{f}( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_2}{f^2}(R^2+2v^2)+2 \dfrac{p_1}{f^2}uv\\ \end{cases}\tag{E} fdu=fu(f2k1R2+f4k2R4+f6k3R6)+f2p1(R2+2u2)+2f2p2uvfdv=fv(f2k1R2+f4k2R4+f6k3R6)+f2p2(R2+2v2)+2f2p1uv(E)

(E)式两边乘f,得:
{ d u = u ( k 1 f 2 R 2 + k 2 f 4 R 4 + k 3 f 6 R 6 ) + p 1 f ( R 2 + 2 u 2 ) + 2 p 2 f u v d v = v ( k 1 f 2 R 2 + k 2 f 4 R 4 + k 3 f 6 R 6 ) + p 2 f ( R 2 + 2 v 2 ) + 2 p 1 f u v (F) \begin{cases} du=u( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_1}{f}(R^2+2u^2)+2 \dfrac{p_2}{f}uv\\ dv=v( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_2}{f}(R^2+2v^2)+2 \dfrac{p_1}{f}uv\\ \end{cases}\tag{F} du=u(f2k1R2+f4k2R4+f6k3R6)+fp1(R2+2u2)+2fp2uvdv=v(f2k1R2+f4k2R4+f6k3R6)+fp2(R2+2v2)+2fp1uv(F)

对比(C)(F)两式,即得:

K 1 = k 1 f 2 K 2 = k 2 f 4 K 3 = k 3 f 6 P 1 = p 1 f P 2 = p 2 f \begin{aligned}K_1 &= \dfrac{k_1}{f^2}\\ K_2 &= \dfrac{k_2}{f^4}\\ K_3 &= \dfrac{k_3}{f^6}\\ P_1 &= \dfrac{p_1}{f}\\ P_2 &= \dfrac{p_2}{f}\\\end{aligned} K1K2K3P1P2=f2k1=f4k2=f6k3=fp1=fp2

XRight-YUp 与 XRight-YDown的畸变系数的关系推导

摄影测量坐标系常用x轴向右y轴向上的像平面坐标系(XRight-YUp);计算机视觉常用x轴向右y轴向下的像平面坐标系(XRight-YDown)。
在这里插入图片描述

设XRightY-Down的图像坐标系中一点坐标为 ( x , y ) (x,y) (x,y),畸变改正数为 ( d x , d y ) (dx,dy) (dx,dy);在相同原点的XRight-YUp中坐标为 ( x , − y ) (x,-y) (x,y),畸变改正数为 ( d x , − d y ) (dx,-dy) (dx,dy)。它们计算畸变的公式形式相同,均符合(G)式:

{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y d y = y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y (G) \begin{cases} dx=x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy\\ dy=y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy\\ \end{cases}\tag{G} {dx=x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2xydy=y(k1r2+k2r4+k3r6)+p2(r2+2y2)+2p1xy(G)

设在XRightY-Down的图像坐标系中畸变参数为 k 1 , k 2 , k 3 , p 1 , p 2 k_1,k_2,k_3,p_1,p_2 k1,k2,k3,p1,p2;在XRightY-Up的图像坐标系中畸变参数为 k 1 ′ , k 2 ′ , k 3 ′ , p 1 ′ , p 2 ′ k'_1,k'_2,k'_3,p'_1,p'_2 k1,k2,k3,p1,p2,则我们有:

{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y = x ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 1 ′ ( r 2 + 2 x 2 ) + 2 p 2 ′ x ( − y ) − d y = − ( y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y ) = ( − y ) ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 2 ′ ( r 2 + 2 ( − y ) 2 ) + 2 p 1 ′ x ( − y ) (H) \begin{cases} dx = x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy=x(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_1(r^2+2x^2)+2p'_2 x(-y)\\ -dy = -(y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy)=(-y)(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_2(r^2+2(-y)^2)+2p'_1 x(-y)\\ \end{cases}\tag{H} {dx=x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2xy=x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2x(y)dy=(y(k1r2+k2r4+k3r6)+p2(r2+2y2)+2p1xy)=(y)(k1r2+k2r4+k3r6)+p2(r2+2(y)2)+2p1x(y)(H)

整理得:

{ x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y = x ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 1 ′ ( r 2 + 2 x 2 ) − 2 p 2 ′ x y − y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) − p 2 ( r 2 + 2 y 2 ) − 2 p 1 x y = − y ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 2 ′ ( r 2 + 2 y 2 ) − 2 p 1 ′ x y (I) \begin{cases} x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy=x(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_1(r^2+2x^2)-2p'_2 xy\\ -y(k_1 r^2+k_2 r^4+k_3 r^6)-p_2(r^2+2y^2)-2p_1 xy=-y(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_2(r^2+2y^2)-2p'_1 xy\\ \end{cases}\tag{I} {x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2xy=x(k1r2+k2r4+k3r6)+p1(r2+2x2)2p2xyy(k1r2+k2r4+k3r6)p2(r2+2y2)2p1xy=y(k1r2+k2r4+k3r6)+p2(r2+2y2)2p1xy(I)

于是可得:

k 1 ′ = k 1 k 2 ′ = k 2 k 3 ′ = k 3 p 1 ′ = p 1 p 2 ′ = − p 2 \begin{aligned}k'_1&=k_1\\ k'_2& = k_2\\ k'_3 &= k_3\\ p'_1& = p_1\\ p'_2 &= -p_2\\\end{aligned} k1k2k3p1p2=k1=k2=k3=p1=p2

即,这两个坐标系中的畸变参数互转时仅需要将 p 2 p_2 p2取相反数,其他畸变系数可通用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233425.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云消息队列 Kafka 版生态谈第一期:无代码转储能力介绍

作者:娜米 云消息队列 Kafka 版为什么需要做无代码转储 云消息队列 Kafka 版本身是一个分布式流处理平台,具有高吞吐量、低延迟和可扩展性等特性。它被广泛应用于实时数据处理和流式数据传输的场景。然而,为了将云消息队列 Kafka 版与其他数…

Gin 项目引入热加载

Gin 项目引入热加载 文章目录 Gin 项目引入热加载一、什么是热加载二、Air2.1 介绍2.2 特性特性:2.3 相关文档2.4 安装推荐使用 install.sh使用 go install 2.5 配置环境变量2.6 使用 三、Fresh3.1 介绍3.2 相关文档3.3 安装与使用 四、bee4.1 介绍4.2 相关文档4.3 …

K8S--持久卷(PersistentVolume)的用法

原文网址:K8S--持久卷(PersistentVolume)的用法-CSDN博客 简介 本文介绍K8S的持久卷(PersistentVolume)的用法。 目标:用持久卷的方式将主机的磁盘与容器磁盘映射,安装nginx并运行。 --------------------------------------------------…

高通开发系列 - toolchain交叉编译器编译kernel以及生成boot镜像

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 返回:专栏总目录 目录 背景概述分析过程generate_defconfig.sh脚本环境准备合并其他几个配置文件开始编译生成dtb镜像

Python笔记07-异常、模块和包

文章目录 异常及捕获方法python模块python包安装第三方包 异常及捕获方法 当检测到一个错误时,Python解释器就无法继续执行了,反而出现了一些错误的提示,这就是所谓的“异常”, 也就是我们常说的BUG 例如:以r方式打开一个不存在的…

ssm基于Vue的戏剧推广网站论文

摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统戏剧推广信息管理难度大,容错率低&#xff0c…

TypeScript接口、对象

目录 1、TypeScript 接口 1.1、实例 1.2、联合类型和接口 1.3、接口和数组 1.4、接口和继承 1.5、单继承实例 1.6、多继承实例 2、TypeScript 对象 2.2、对象实例 2.3、TypeScript类型模板 2.4、鸭子类型(Duck typing) 1、TypeScript 接口 接口…

提升图像分割精度:学习UNet++算法

文章目录 一、UNet 算法简介1.1 什么是 UNet 算法1.2 UNet 的优缺点1.3 UNet 在图像分割领域的应用 二、准备工作2.1 Python 环境配置2.2 相关库的安装 三、数据处理3.1 数据的获取与预处理3.2 数据的可视化与分析 四、网络结构4.1 UNet 的网络结构4.2 UNet 各层的作用 五、训练…

10本审稿及出版效率均较好的科普期刊参数分享!

医、药、护、技及医学工程等相关的人员,进行卫生高级职称评审时,需要在专业期刊上公开发表本专业学术论文,论文的方向、内容质量以及发表的刊物都至关重要。今天常笑医学给大家整理了10本审稿及出版效率均较好的科普期刊!参数分享…

java 音乐会售票平台系统Myeclipse开发mysql数据库struts2结构java编程计算机网页项目

一、源码特点 java 音乐会售票平台系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助struts2框架开发mvc模式,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发 环境为TOCAT7.0,Myeclipse8.5开发,数据…

深入了解鸿鹄电子招投标系统:Java版企业电子招标采购系统的核心功能

随着市场竞争的加剧和企业规模的扩大,招采管理逐渐成为企业核心竞争力的重要组成部分。为了提高招采工作的效率和质量,我们提出了一种基于电子化平台的解决方案。该方案旨在通过电子化招投标,使得招标采购的质量更高、速度更快,同…

FFmpeg读取Assets资源文件

在Android开发中我们经常把原生资源文件放在assets目录下以供需要时读取,通过API提供的resources.assets.open(filename)/openFd(filenam)方法可以非常方便获得InputStream或FileDescriptor(文件标识符),但是在使用FFmpeg读取Asse…

PHPStudy快速搭建网站并结合内网穿透远程访问本地站点

文章目录 [toc]使用工具1. 本地搭建web网站1.1 下载phpstudy后解压并安装1.2 打开默认站点,测试1.3 下载静态演示站点1.4 打开站点根目录1.5 复制演示站点到站网根目录1.6 在浏览器中,查看演示效果。 2. 将本地web网站发布到公网2.1 安装cpolar内网穿透2…

Google Earth Engine(GEE)深度学习入门教程- GEE导出篇

GEE导出篇 官方教程:TFRecord 和地球引擎 在GEE的JS Code Editor中,我们按照我们的需要去处理对应的遥感影像,得到处理后Image影像。为了导出后读取数据,在导出前一定清楚每个波段的名称(不然没法读取)。…

数环通12月产品更新:新增数据表相关功能、优化编辑器,15+应用进行更新

为了满足用户不断增长的需求,我们持续努力提升产品的功能和性能,以更好地支持用户的工作。 数环通12月的最新产品更新已经正式发布,带来了一系列强大的功能,以提升您的工作效率和系统的可靠性。 更新快速预览 新增&优化功能&a…

小梅哥Xilinx FPGA学习笔记20——无源蜂鸣器驱动设计与验证(音乐发生器设计)

目录 一:章节导读 二:无源蜂鸣器驱动原理 三:PWM 发生器模块设计 3.1 PWM 发生器模块框图 3.2 PWM 发生器模块接口功能描述 3.3 PWM波生成设计文件代码 3.4 测试仿真文件 3.5 测试仿真结果 3.6 板级调试与验证之顶层文件设计 四&am…

【Project】TPC-Online Module (manuscript_2024-01-07)

PRD正文 一、概述 本模块实现隧道点云数据的线上汇总和可视化。用户可以通过注册和登录功能进行身份验证,然后上传原始隧道点云数据和经过处理的数据到后台服务器。该模块提供数据查询、筛选和可视化等操作,同时支持对指定里程的分段显示和点云颜色更改…

系列十一、(三)Sentinel控制台

一、Sentinel控制台 二、实时监控 2.1、概述 实时监控,顾名思义是用来实时监控的,具体监控的是接口请求通过的QPS和拒绝的QPS,默认情况下没有访问记录,所以看不到任何记录,需要访问接口才会有记录。另外需要注意&…

C++ 模板进阶

目录 一、非类型模板参数 二、模板的特化 1、函数模板特化 2、类模板特化 全特化 偏特化 3、例题 三、模板分离编译 1、定义 2、解决方法 3、模板总结 一、非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即:出现在模板参数列表中&#xf…

662. 二叉树最大宽度

题目 给你一棵二叉树的根节点 root ,返回树的 最大宽度 。 树的 最大宽度 是所有层中最大的 宽度 。 每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度。将这个二叉树视作与满二叉树结构相同&#xff0…