欧拉回路与哈密尔顿回路: Fleury算法与Hierholzer 算法(C++)

图论中的回路是指一个路径, 它从某个顶点开始, 经过所有边恰好一次, 并回到起始顶点.

定义

  • 欧拉回路: 从一个顶点出发, 经过每条边恰好一次, 并且最终回到起始顶点.

  • 哈密尔顿回路: 从一个顶点出发, 经过每个顶点恰好一次, 并且最终回到起始顶点.

  • 欧拉路径: 从一个顶点出发, 访问图中的每一个边恰好一次, 但不需要回到起始顶点.

  • 哈密尔顿路径: 从一个顶点出发, 访问图中的每一个其他顶点恰好一次, 但不需要回到起始顶点.

sample

欧拉回路

无向图的条件

  • 对于无向图, 构成欧拉回路的充要条件是: 所有顶点的度数都必须是偶数.
  • 如果仅有两个顶点的度数为奇数, 则存在从其中一个顶点到另一个顶点的欧拉路径, 但不是欧拉回路.

柯尼斯堡

欧拉证明七桥问题没有解, 因为存在度为奇数的顶点.

有向图的条件

  • 对于有向图, 每个顶点的入度必须等于出度才能构成欧拉回路.
  • 如果仅有一个顶点的出度比入度多 1, 且另一个顶点的入度比出度多 1, 其余顶点的出入度相等, 则存在从出度多 1 的顶点到入度多 1 的顶点的欧拉路径.

求解算法

求解欧拉回路的主要算法包括 Fleury 算法和 Hierholzer 算法:

Fleury 算法解析

Fleury 算法是一种较为直观的方法, 逐步构造欧拉回路, 但其效率较低, 因为需要检查每一步是否会破坏图的连通性.

算法步骤如下:

  1. 选择起点:

    • 如果图中存在欧拉回路, 则可以从任意顶点开始.
    • 如果图中只存在欧拉路径, 则必须从度数为奇数的两个顶点之一开始.
  2. 遍历边:

    • 从当前顶点出发, 选择下一条边进行遍历.
    • 除非没有其他选择, 不然需要避免选择"桥"(或者说割边). 判断某条边是否为桥梁可以通过暂时移除该边并检查图是否仍然连通来实现. 加入断开了这条边之后, 原先的图不再相连, 则此边是一个桥.
  3. 标记已访问的边: 每次选择一条边后, 将其标记为已访问, 并将其从图中移除(或者记录下来以便后续恢复).

  4. 移动到下一个顶点: 移动到所选边的另一端点, 并重复上述过程, 直到所有边都被访问过.

  5. 返回起点:

    • 如果是从欧拉回路的起点开始, 则最终会回到该起点, 形成一个闭合回路.
    • 如果是从欧拉路径的一个端点开始, 则最终会到达另一个端点, 形成一条欧拉路径.
示例

求下图的欧拉路径:

sample

fleury 算法步骤:

  1. 任意选定起点, 假定选择了A., A有两条边, 均不是桥, 任选一个都可以. 假定我们选择了A-B. 此时结果如下:

    f1

  2. 此时我们到达了B, B的的三条边均不是桥, 任选其一. 假定选了B-E. 结果如下:

    f2

  3. 此时我们到达了E, 三条边均可选 假定选了E-D. 结果如下:

    f3

  4. 现在到达了D, 注意D-A是一个桥, 因为此时还有其他边可选, 所不能选D-A.

    f4

  5. 后续步骤不再赘述, 看 gif.

    fig

Hierholzer 算法

Hierholzer 算法是一个更为高效的方法, 通过利用回路合并的思想来构建欧拉回路. 它的基本思想是从任意一个顶点开始, 尝试访问每一条边, 并将访问过的边移除, 直到无法继续前进时, 再回溯寻找新的未访问边, 直到所有的边都被访问过为止.

算法步骤
  1. 选择起点:

    • 从任意一个顶点开始(对于欧拉回路, 任何顶点都可以作为起点; 对于欧拉路径, 则需要从度数为奇数的顶点之一开始).
  2. 初始化路径:

    • 创建一个空列表 path 来存储当前找到的路径.
    • 创建一个栈 stack 并将起点压入栈中.
  3. 遍历边:

    • 当栈不为空时, 执行以下操作:
      1. 弹出栈顶元素: 将栈顶元素取出并设为当前顶点 current_vertex.
      2. 检查相邻边: 检查当前顶点的所有未访问过的相邻边.
      3. 如果存在未访问的边:
        • 随机选择一条未访问的边, 并将其标记为已访问.
        • 将该边的另一端点推入栈中.
      4. 如果没有未访问的边:
        • 将当前顶点添加到 path 列表中.
  4. 合并路径:

    • 当栈为空时, path 列表中的顶点顺序即为所求的欧拉回路. 但由于我们是从后往前添加顶点的, 因此需要反转 path 列表.
  5. 返回结果:

    • 返回反转后的 path 列表, 这就是所求的欧拉回路.
示例演示

针对上题中提到的样例, hierholzer 的步骤如下图所示:

h

需要注意的是:

  1. A被第二次访问的时候, 此时没有其他边可走, 因此需要从栈中弹出A并添加到path中.
  2. 接下来的出栈操作在所有节点访问完毕的时候.
代码实现

以下是一个具体的 C++ 实现的核心部分, 完整代码请参考:

std::vector<int> FindEulerCircuit(int start) {std::stack<int> stack;  // 当前路径std::vector<int> path;  // 存储最终的欧拉回路stack.push(start);while (!stack.empty()) {int currV = stack.top();// 如果当前顶点有未访问的边auto adjList = graph_.Adj(currV);if (!adjList.empty()) {int nextV = *adjList.begin();graph_.RemoveEdge(currV, nextV);stack.push(nextV);} else {// 如果没有未访问的边,则将当前顶点加入电路path.push_back(currV);stack.pop();}}// 反转电路以获得正确的顺序std::reverse(path.begin(), path.end());return path;
}

完整代码请参考: Hierholzer.ixx

时间复杂度

Hierholzer 算法的时间复杂度为 O ( E ) O(E) O(E), 其中 E E E 是图中的边数. 这是因为每条边只会被访问一次, 并且在每次访问时只需要常数时间的操作(如栈操作和边的删除). 这使得 Hierholzer 算法在处理大规模图时非常高效.

汉密尔顿回路

寻找一个给定图是否存在哈密尔顿回路的问题是一个典型的 NP 完全问题, 这意味着目前没有已知的有效算法可以在多项式时间内解决任意图的这个问题. 通常采用的方法包括暴力搜索, 回溯法以及一些启发式的优化策略来尝试解决特定实例的问题.

由于其复杂性, 对于较大的图, 求解哈密尔顿回路往往需要消耗大量的计算资源. 然而, 在某些特殊情况下, 如图具有特定结构时, 可以设计出有效的算法来解决问题. 例如, 在竞赛编程或者算法面试中, 如果图的规模较小(比如不超过 30 个顶点), 可以通过状态压缩动态规划等方法来尝试解决.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23551.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从图片生成3维场景--NERF原理解析及加速版HashNeRF-pytorch代码实现

概要 NeRF&#xff08;Neural Radiance Fields&#xff09;是一种基于神经网络的三维图像生成技术&#xff0c;通过一组从不同角度拍摄的2D图片&#xff0c;生成一个3D场景&#xff0c;并且能够渲染出该场景在任意视角下的图像。这项技术的核心思想是利用神经网络的强大建模能…

PHP-综合4

[题目信息]&#xff1a; 题目名称题目难度PHP-综合42 [题目考点]&#xff1a; PHP综合训练[Flag格式]: SangFor{Ouk3i63BuShgxqdRcn_9kMNqKFDe5j4f}[环境部署]&#xff1a; docker-compose.yml文件或者docker tar原始文件。 http://分配ip:2087[题目writeup]&#xff1a;…

爱普生SG-8101CE可编程晶振赋能智能手机的精准心脏

在智能手机高速迭代的今天&#xff0c;高性能、低功耗与小型化已成为核心诉求。智能手机作为人们生活中不可或缺的工具&#xff0c;需要在各种复杂场景下稳定运行。爱普生SG-8101CE可编程晶振凭借其卓越性能&#xff0c;成为智能手机中不可或缺的精密时钟源&#xff0c;为通信、…

基于SpringBoot的“流浪动物救助系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“流浪动物救助系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 局部E-R图 系统首页界面 系统…

【AI】模型量化--模型量化技术基础

1. 背景 对于接触过AI模型的人来说,经常会听说一个词语模型量化,那什么是模型量化?为什么需要模型量化?有哪些常用的模型量化技术呢?本文将一一展开叙述。 2. 概念 模型量化是一种在深度学习和机器学习领域中广泛应用的技术,旨在通过减少模型中数据的表示精度来降低模…

力扣(leetcode)每日一题 1656 设计有序流

1656. 设计有序流 - 力扣&#xff08;LeetCode&#xff09; 题目 有 n 个 (id, value) 对&#xff0c;其中 id 是 1 到 n 之间的一个整数&#xff0c;value 是一个字符串。不存在 id 相同的两个 (id, value) 对。 设计一个流&#xff0c;以 任意 顺序获取 n 个 (id, value) …

【附源码】基于opencv+pyqt5搭建的人脸识别系统

文章目录 前言一、人脸检测二、人脸识别1.训练识别器2.识别人脸 三、界面相关1.Qlabel展示图片2.表格跟随内容而增加和减少3.选择图片文件4.警告框 四、源码获取总结 前言 人脸识别技术作为人工智能领域的一颗璀璨明珠&#xff0c;正逐渐渗透到我们生活的每一个角落&#xff0…

【一起学Rust | 框架篇 | Tauri2.0框架】在Tauri应用中设置Http头(Headers)

文章目录 前言一、配置准备1. 检查版本2. 使用条件3. 支持的请求头&#xff08;并不是全部支持&#xff09; 二、使用步骤1. 如何配置header2. 框架集成1. 对于Vite系列、Nuxt、Next.js这种前端框架Vite系列框架Angular系列框架Nuxt系列框架Next.js系列框架 2. 对于Yew和Leptos…

计算机毕业设计SpringBoot+Vue.jst0图书馆管理系统(源码+LW文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

SeaCMS V9海洋影视管理系统报错注入

漏洞背景 SQL 注入攻击是当前网络安全中最常见的一种攻击方式&#xff0c;攻击者可以利用该漏洞访问或操作数据库&#xff0c;造成数据泄露或破坏。通常发生在开发人员未能正确处理用户输入时。 在 SeaCMS V9 中&#xff0c;用户输入&#xff08;如登录、评论、分页、ID 等&a…

Upload-labs

pass-01 先随便上传一个php文件&#xff0c;但提示发现使用了js对不法文件进行了检查&#xff0c;是前端验证 上传php代码<?php phpinfo();?> ,使用bp抓包 将后缀名改为php然后放行 复制图片链接访问&#xff0c;得到有关php的所有信息 Pass-02 根据提示可以知道&…

算法回顾1

class Solution {public int removeElement(int[] nums, int val) {int fast 0;int slow 0;for (fast 0; fast < nums.length; fast) {if (nums[fast] ! val) {nums[slow] nums[fast];slow;}}return slow;} } 用双指针写这道题&#xff0c;快慢指针初始值都为0&#xf…

智能交通系统(Intelligent Transportation Systems):智慧城市中的交通革新

智能交通系统&#xff08;Intelligent Transportation Systems, ITS&#xff09;是利用先进的信息技术、通信技术、传感技术、计算机技术以及自动化技术等&#xff0c;来提升交通系统效率和安全性的一种交通管理方式。ITS通过收集和分析交通数据&#xff0c;智能化地调度、控制…

LangChain 由入门到精通

LangChain 由入门到精通 作者&#xff1a;王珂 邮箱&#xff1a;49186456qq.com 文章目录 LangChain 由入门到精通简介一、LangChain环境搭建1.1 集成大模型提供商1.1.1 集成Ollama 1.2 LangChain安装 二、LangChain开发2.1 提示词工程2.2 示例集 三、LangChain LCEL 工作流编…

使用S32DS部署Tensorflow lite到S32K3

一、概述 1、本文主要介绍如何用S32DS在NXP S32K344 中部署Tensorflow&#xff1b; 2、示例使用了Tensorflow入门代码&#xff0c;主要功能是识别28 * 28 的手写图片的数字&#xff1b; 3、在MCU上开启DSP功能后&#xff0c;最终运行时间在 7ms&#xff08;64神经元&#xf…

【OMCI实践】ONT上线过程的omci消息(五)

引言 在前四篇文章中&#xff0c;主要介绍了ONT上线过程的OMCI交互的第一、二、三个阶段omci消息&#xff0c;本篇介绍第四个阶段&#xff0c;OLT下发配置到ONT。前三个阶段&#xff0c;每个厂商OLT和ONT都遵循相同标准&#xff0c;OMCI的交换过程大同小异。但第四个阶段&…

vue3: directive自定义指令防止重复点击

第一章 前言 相信很多小伙伴会在各个渠道上搜如何防止重复点击&#xff0c;之后会推荐什么防抖、节流来避免这一操作&#xff0c;该方法小编就不继续往下说了。接下来说说小编的场景&#xff0c;项目已经完成的差不多了&#xff0c;但是由于之前大家都是直接点击事件调用方法的…

危化品经营单位安全管理人员的职责及注意事项

危化品经营单位安全管理人员肩负着保障经营活动安全的重要责任&#xff0c;以下是其主要职责及注意事项&#xff1a; 职责 1. 安全制度建设与执行&#xff1a;负责组织制定本单位安全生产规章制度、操作规程和生产安全事故应急救援预案&#xff0c;确保这些制度符合国家相关法…

解决VMware 安装 Ubuntu 后无法全屏的问题

根据以往的经验&#xff0c;一直想安装 VMware-tools&#xff0c;但是看了官方介绍才突然发现早就已经有更好的替代品了。 官方介绍连接在此&#xff1a;Install VMware Tools in VMware products 如上图所述&#xff0c;早期的 Linux 系统推荐安装 VMware-tools&#xff0c;但…

C++ 继承,多态

看前须知&#xff1a; 本篇博客是作者听课时的笔记&#xff0c;不喜勿喷&#xff0c;若有疑问可以评论区一起讨论。 继承 定义&#xff1a; 继承机制是⾯向对象程序设计使代码可以复⽤的最重要的⼿段&#xff0c;它允许我们在保持原有 类特性的基础上进⾏扩展&#xff0c;增…