【提示学习论文六】MaPLe: Multi-modal Prompt Learning论文原理

文章目录

  • MaPLe: Multi-modal Prompt Learning 多模式提示学习
  • 文章介绍
  • 动机
  • MaPLe:Multi-modal Prompt Learning 模型结构
    • 1、Deep Language Prompting 深度语言提示
    • 2、Deep Vision Prompting 深度视觉提示
    • 3、Vision Language Prompt Coupling 视觉语言提示耦合
      • 提示耦合过程
  • 实验
    • 1、通过V-L prompts prompting CLIP
    • 2、基类到新类的泛化
    • 3、跨数据集评估
    • 4、域泛化
    • 5、消融实验
  • 总结

MaPLe: Multi-modal Prompt Learning 多模式提示学习

文章介绍

  • 这篇文章于2023年发表在CVPR(Conference on Computer Vision and Pattern Recognition),作者是Muhammad Uzair Khattak,Hanoona Rasheed,Muhammad Maaz,Salman Khan,Fahad Shahbaz Khan。
  • 研究发现Clip的问题:在单个分支(语言或视觉)中使用prompt来调整表示是次优的,它不能在下游任务上灵活地动态调整两个表示空间。
  • 作者提出了针对视觉和语言分支的多模态提示学习(MaPLe),以改善视觉和语言表征之间的一致性。
  • 与CoCoOp方法相比更好。

动机

在这里插入图片描述

作者认为,Clip中只有文本编码器学习prompt,不足以对图像编码器所需的适应进行建模,因此着手基于多模态提示学习(MaPLe)来充分微调文本和图像编码器表示。

MaPLe:Multi-modal Prompt Learning 模型结构

在这里插入图片描述

  • 这是第一个用于微调CLIP的多模式提示方法。
  • 多模态提示是在视觉和语言分支的多个转换块中学习的,以逐步学习两种模态的协同行为。
  • 提出了耦合函数,将文本和图像编码器中的提示学习联系起来,作为两种模式之间的桥梁,允许梯度的相互传播,以促进协同作用。
  • 在视觉和语言分支的前 J J J 层( J J J < K K K )引入 learnable token。
text encoder文本编码器image encoder图像编码器
W i W_i Wiword embeddings E i E_i Eiimage embeddings
L i L_i Li某层transformer V i V_i Vi某层transformer
P i P_i Pi提示 P i P_i Pi提示
c i c_i ciclass(CLS) tokens

1、Deep Language Prompting 深度语言提示

  • 作者在 text encoder 的 J J J 层各引入了 b b b 个learnable tokens : { P i ∈ R d l {P_i \in \mathbb{R}}^{d_{l}} PiRdl} i = 1 b _{i=1}^b i=1b

  • 输入: [ P 1 , P 2 , … , P b , W 0 ] [P_1, P_2, \ldots , P_b, W_0] [P1,P2,,Pb,W0]

  • J J J:提示tokens被引入到每一层 L i L_i Li,与 W i W_i Wi 进行连接,这里的 [ ⋅ , ⋅ ] [ \cdot, \cdot] [,] 是指连接操作。(包括第 J J J 层)

[ − , W i ] = L i ( [ P i − 1 , W i − 1 ] ) i = 1 , 2 , … , J (1) \left[ -, W_i \right] = L_i \left( \left[P_{i-1}, W_{i-1}\right] \right) \text { } i = 1, 2, \ldots, J \quad \tag{1} [,Wi]=Li([Pi1,Wi1]) i=1,2,,J(1)

  • J J J没有额外的提示输入,而是处理前一层的prompt,通过自注意力机制和前馈神经网络来处理文本数据,计算最后的文本表示 z z z

[ P j , W j ] = L j ( [ P j − 1 , W j − 1 ] ) j = J + 1 , … , K (2) [P_j, W_j] = L_j \left( \left[P_{j-1}, W_{j-1}\right] \right) \text { } j = J + 1, \ldots, K \quad \tag{2} [Pj,Wj]=Lj([Pj1,Wj1]) j=J+1,,K(2)
z = TextProj ( w N K ) (3) z = \text{TextProj} \left(w_{N_K}\right) \quad \tag{3} z=TextProj(wNK)(3)

  • J = 1 J = 1 J=1提示 P P P 只应用于第一个Transformer层的输入,此时深度语言提示技术退化为CoOp

2、Deep Vision Prompting 深度视觉提示

  • 类似于深度语言提示,在 text encoder 的 J J J 层各引入了 b b b 个learnable tokens : { P i ~ ∈ R d v {\tilde{P_i} \in \mathbb{R}}^{d_{v}} Pi~Rdv} i = 1 b _{i=1}^b i=1b
  • J J J
    [ c i , E i ] = V i ( [ c i − 1 , E i − 1 , P ~ i − 1 ] ) i = 1 , 2 , … , J [c_i, E_i] = V_i([c_{i-1}, E_{i-1}, \tilde{P}_{i-1}]) \quad \text { } i = 1, 2, \ldots, J [ci,Ei]=Vi([ci1,Ei1,P~i1]) i=1,2,,J
  • J J J
    [ c j , E j , P ~ j ] = V j ( [ c j − 1 , E j − 1 , P ~ j − 1 ] ) j = J + 1 , … , K [c_j, E_j, \tilde{P}_j] = V_j([c_{j-1}, E_{j-1}, \tilde{P}_{j-1}]) \quad \text{ } j = J + 1, \ldots, K [cj,Ej,P~j]=Vj([cj1,Ej1,P~j1]) j=J+1,,K
    x = ImageProj ( c K ) x = \text{ImageProj}(c_K) x=ImageProj(cK)

3、Vision Language Prompt Coupling 视觉语言提示耦合

共享提示在两种模态之间建立联系,语言提示被引入到语言分支中的J层Transformer块中,而视觉提示通过视觉到语言的投影函数从语言提示中获得

在这里插入图片描述

  • independent V-L Prompting:独立V-L提示
  • 通过投影函数 F ( ⋅ ) F(\cdot) F()将语言提示 P i P_i Pi 映射到视觉提示 P i ~ \tilde{P_i} Pi~
  • F i F_i Fi是一个线性层,这个映射操作是一个从 d l dl dl 维到 d v dv dv 维的线性变换

提示耦合过程

  • 提示过程使用投影函数 F ( ⋅ ) F(\cdot) F() 在前 J J J 个transformer块中进行
  • 语言分支:通过 F i F_i Fi P i P_i Pi 进行映射,得到了 P i ~ \tilde{P_i} Pi~
  • 视觉分支:通过引入了调整后的视觉提示 P i ~ \tilde{P_i} Pi~,保持了分支之间的协同作用。

实验

1、通过V-L prompts prompting CLIP

在这里插入图片描述

  • shallow MaPLe(第1行)在泛化方面提供了对CoOp和Co-CoOp的持续改进。
  • 深度语言提示(第3行)比深度视觉提示(第2行)有所改善,表明在语言分支学习的提示能更好地适应CLIP。
  • 虽然单独结合上述两种方法(第4行)进一步提高了性能,但它很难从语言和视觉分支中获得综合效益。
  • MaPLe与深度提示(第4行)结合了提示在两个分支中的好处,通过在语言提示上执行视觉提示的显式条件反射来强制交互。它提供了新类和基类准确度的改进,导致最佳HM为78.55%。

2、基类到新类的泛化

在这里插入图片描述

  • 给出了MaPLe在11个识别数据集上从基类到新类的泛化设置下的性能。
  • 与最先进的Co-CoOp相比,MaPLe在所有11个数据集上的基本类和新类性能都有所提高,只有Caltech101的基本类性能略有下降。
  • 与CLIP相比,Co-CoOp仅在4/11数据集上有所提高,平均新分类准确率从74.22%降至71.69%。
  • MaPLe是一个强大的竞争对手,它在6/11数据集上的新类别上提高了CLIP的准确性,平均增益从74.22%提高到75.14%。

3、跨数据集评估

在这里插入图片描述

我们通过在所有1000个ImageNet类上学习多模态提示,然后直接将其转移到剩余的10个数据集上,来测试MaPLe的跨数据集泛化能力。MaPLe表现出有竞争力的性能,平均准确率最高,为66.30%。

4、域泛化

在这里插入图片描述
评估了ImageNet训练模型对各种域外数据集的直接可移植性,并观察到,与表5所示的所有现有方法相比,它持续提升。

5、消融实验

在这里插入图片描述

  • Prompt Depth(左):深度J对语言和视觉分支深度的影响
    MaPLe在深度为 9 时实现了最大性能
  • Prompt Length(右):提示符长度对MaPLe的影响
    随着提示符长度的增加,基类上的性能一般保持不变,而新类的准确率则下降。这表明过拟合本质上损害了对新类别的泛化。
    在这里插入图片描述
  • Effectiveness of Multi-modal Prompting:多模式提示的有效性

在这里插入图片描述

  • Prompting complexity:提示复杂度
    MaPLe提供了更好的推理和训练速度,MaPLe†的参数比MaPLe小约9倍,MaPLe†对所有层prompt使用统一的V-L耦合函数,比MaPLe少约9倍的参数,但性能差异不大。

总结

大规模V-L模型(例如CLIP)对下游任务的适应是一个具有挑战性的问题,因为大量的可调参数和有限的下游数据集大小。提示学习是一种高效且可扩展的技术,可以根据新的下游任务定制V-L模型。为此,目前的提示学习方法要么只考虑视觉方面的提示,要么只考虑语言方面的提示。我们的工作表明,对视觉和语言分支进行提示是至关重要的,以使V-L模型适当地适应下游任务。此外,我们提出了一种策略,通过在不同的transformer阶段将视觉提示明确地限制在文本提示上,来确保视觉语言模式之间的协同作用。我们的方法提高了对新类别、跨数据集迁移和具有域迁移的数据集的泛化能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/235998.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Proteus仿真stm32f103r6输出PWM/正弦波

资料下载地址&#xff1a;Proteus仿真stm32f103r6输出PWM/正弦波 一、仿真图 Proteus仿真stm32f103r6输出PWM/正弦波 二、程序 #include "pbdata.h"u16 fre; void RCC_Configuration(void); void GPIO_Configuration(void); void TIM3_Configuration();void Dela…

SQL-分组查询

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

12、JVM高频面试题

1、JVM的主要组成部分有哪些 JVM主要分为下面几部分 类加载器&#xff1a;负责将字节码文件加载到内存中 运行时数据区&#xff1a;用于保存java程序运行过程中需要用到的数据和相关信息 执行引擎&#xff1a;字节码文件并不能直接交给底层操作系统去执行&#xff0c;因此需要…

基于JavaWeb+BS架构+SpringBoot+Vue基于hive旅游数据的分析与应用系统的设计和实现

基于JavaWebBS架构SpringBootVue基于hive旅游数据的分析与应用系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 1 概 述 5 1.1 研究背景 5 1.2 研究意义 5 1.3 研究内容…

计算机毕业设计 基于SpringBoot的物资综合管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

Vue3项目引入canvaskit-wasm库(skia库的wasm版)

1 安装canvaskit-wasm npm install canvaskit-wasm 或者 yarn add canvaskit-wasm 2 将文件node_modules/canvaskit-wasm/bin/canvaskit.wasm复制到public目录 3 引入到组件中 <template><img :src"imgData"/> </template><script setup>…

MongoDB索引详解

概述 索引是一种用来快速查询数据的数据结构。BTree 就是一种常用的数据库索引数据结构&#xff0c;MongoDB 采用 BTree 做索引&#xff0c;索引创建 colletions 上。MongoDB 不使用索引的查询&#xff0c;先扫描所有的文档&#xff0c;再匹配符合条件的文档。使用索引的查询&…

【漏洞复现】天融信TOPSEC static_convert 远程命令执行

漏洞描述 天融信TOPSEC Static_Convert存在严重的远程命令执行漏洞。攻击者通过发送精心构造的恶意请求,利用了该漏洞,成功实现在目标系统上执行任意系统命令的攻击。成功利用漏洞的攻击者可在目标系统上执行恶意操作,可能导致数据泄露、系统瘫痪或远程控制。强烈建议立即更…

单片机中的PWM(脉宽调制)的工作原理以及它在电机控制中的应用。

目录 工作原理 在电机控制中的应用 脉宽调制&#xff08;PWM&#xff09;是一种在单片机中常用的控制技术&#xff0c;它通过调整信号的脉冲宽度来控制输出信号的平均电平。PWM常用于模拟输出一个可调电平的数字信号&#xff0c;用于控制电机速度、亮度、电压等。 工作原理 …

3D模型UV展开原理

今年早些时候&#xff0c;我为 MAKE 杂志写了一篇教程&#xff0c;介绍如何制作视频游戏角色的毛绒动物。 该技术采用给定的角色 3D 模型及其纹理&#xff0c;并以编程方式生成缝纫图案。 虽然我已经编写了一般摘要并将源代码上传到 GitHub&#xff0c;但我在这里编写了对使这一…

力扣日记1.11-【二叉树篇】450. 删除二叉搜索树中的节点

力扣日记&#xff1a;【二叉树篇】450. 删除二叉搜索树中的节点 日期&#xff1a;2024.1.11 参考&#xff1a;代码随想录、力扣 450. 删除二叉搜索树中的节点 题目描述 难度&#xff1a;中等 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key…

多测师肖sir___ui自动化测试po框架讲解版

po框架 一、ui自动化po框架介绍 &#xff08;1&#xff09;PO是Page Object的缩写 &#xff08;2&#xff09;业务流程与页面元素操作分离的模式&#xff0c;可以简单理解为每个页面下面都有一个配置class&#xff0c; 配置class就用来维护页面元素或操作方法 &#xff08;3&am…

XTuner 大模型单卡低成本微调实战

XTuner 大模型单卡低成本微调实战 Finetune简介增量预训练微调指令跟随微调LoRA XTuner介绍功能亮点 8GB显存玩转LLMFlash AttentionDeepSpeed ZeRO 上手操作平台激活环境微调 参考教程&#xff1a;XTuner Finetune简介 LLM的下游应用任务中&#xff0c;增量预训练和指令跟随…

【python】python新年烟花代码【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 新年的钟声即将敲响&#xff0c;为了庆祝这个喜庆的时刻&#xff0c;我们可以用 Python 编写一个炫彩夺目的烟花盛典。本文将详细介绍如何使用 Pygame 库创建一个令人惊叹的烟花效果。 一、效果图&#xff1a; 二…

互联网加竞赛 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度&#xff0c;召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

Linux 部署 AI 换脸

我使用的系统是 Ubuntu 20.04 文章实操主要分为以下几个部分 1、python 环境安装 2、下载 FaceFusion 上传服务器 3、创建 python 虚拟环境 4、下载 FaceFusion 依赖&#xff08;这里的命令执行时间会很长&#xff0c;够你睡午觉了&#xff09; 5、运行 FaceFusion 6、开…

基于css实现动画效果

介绍 本文将会基于css&#xff0c;实现各种动画效果&#xff0c;接下来会从简单几个例子入手。 案例 三颗球 <!DOCTYPE html> <html lang"en"><head><meta charset"utf-8" /><title>React App</title><style>…

初识Hadoop-概述与关键技术

一.大数据概述 1.什么是大数据 高速发展的信息时代&#xff0c;新一轮科技革命和变革正在加速推进&#xff0c;技术创新日益成为重塑经济发展模式和促进经济增长的重要驱动力量&#xff0c;而“大数据”无疑是核心推动力。 那么&#xff0c;什么是“大数据”呢&#xff1…

0基础学习VR全景平台篇第137篇:720VR全景,DJI无人机遥控器调参

上课&#xff01;全体起立~ 大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01; 这节课以御2为例 介绍的是无人机调参 步骤一&#xff1a;下载DJI Go 4并注册账号 步骤二&#xff1a;拿下遥杆并装好&#xff0c;展开遥控天线。将无人机与遥控器相连&#xff…

Elasticsearch倒排索引详解

倒排索引&#xff1a; 组成 term index(词项索引 &#xff0c;存放前后缀指针) Term Dictionary&#xff08;词项字典&#xff0c;所有词项经过文档与处理后按照字典顺序组成的一个字典&#xff08;相关度&#xff09;&#xff09; Posting List&#xff08;倒排表&#xf…