《NLP入门到精通》栏目导读

 一、说明

        栏目《NLP入门到精通》本着从简到难得台阶式学习过度。将自然语言处理得知识贯穿过来。本栏目得前导栏目是《深度学习》、《pytorch实践》,因此,读者需要一定得深度学习基础,才能过度到此栏目内容。

二、博客建设理念

        本博客基地,将建成人工智能领域的参考资料库;这个资料库收集的是AI的关键技术、AI最新技术。博客文章来源有三:1 博主本人所作,2 另一些是学习中的笔记文档,3 追踪当前全球AI前缘技术论文,这些所谓的前缘性技术,就是尚没有编程印刷书籍的技术文章。对于这些他人文章,博主进行二次创作,如:多文合并、追加段落、重新组织。因而无版权之忧。

        另外,本博客基地文章必须保证有一定技术和理论高度,大致与硕士生水平相当。

三、收费栏目订阅方法

3.1 付费价格标准

本博客基地,原则上收费文章为每篇0.5-1元左右。以下表标示栏目的标价信息。

 3.2 人工智能综合栏目

        【人工智能综合】栏目文章最多,收费最高。而【人工智能综合】不是一个新栏目,是其他栏目的合编。它包含了七个AI题目的栏目,如下图:

3.3 栏目中有些文章与栏目不符合

有些NLP栏目出现与本栏目不符的题目,似乎栏目管理不专业。情况是这样的,付费栏目只能追加,系统不允许删除,一旦操作失误就无法调整和改正,因此也就无法严格管理了,请大家见谅。

四、 栏目《NLP入门到精通》-基础文章

栏目文档导读表
单元内容范围专题描述备注
第一单元: 文本分类,基于统计学模型。待续
第二单元   词嵌入,基于深度学习网络。
第三单元: CNN。LSTM,序列神经网络,句法分析。
第四单元: 在词嵌入基础上,对上下文进行分析。
第五单元: Bert词法,词性分析。
第六单元  transformers语言翻译,词法、句法综合。
第七单元  LLM大语言模型。
第八单元  主题模型,文本摘要提取,语义分解。
第九单元  综合知识。


 

第一单元:文本分类

        该专题专门针对 基础学员,对基本的pytorch内容、语法、类和属性等进行了解,以便以后能明确无疑地应用。此专题在不断更新中,目前的全部文章是:

【NLP模型】文本建模(2)TF-IDF关键词提取原理 

【NLP概念源和流】 02-稠密文档表示(第 2/20 部分) 

【NLP】 实施文本分类器  

【NLP】 文本技术方法指南  

【NLP】PageRank、TextRank算法的原理解析_textrank和pagerank 

第二单元:词嵌入

【NLP概念源和流】 06-编码器-解码器模型(6/20 部分) 

【NLP概念源和流】 03-基于计数的嵌入,GloVe(第 3/20 部分) 

【深度学习】编码器专题(01) 

【深度学习】编码器专题(02) 

【NLP】基础工程:词嵌入_nlp词嵌入 

【深度学习】 NLP和神经网络表示 

【NLP】Word2vec概念和演进史_word2vec的发展 

第三单元:CNN和LSTM

【深度学习】看似不合理实则有效的RNN 

【NLP概念源和流】 04-过度到RNN(第 4/20 部分)

【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类 

【深度学习】深度了解 LSTM 

【NLP】LSTM追根溯源 

【NLP】理解LSTM的内在逻辑 

第四单元:Attension

【NLP】多头注意力概念(01) 

【NLP】Attention机制和RNN 

第五单元:Bert

【NLP】使用BERT构建一个情绪分析模型 

【NLP】BERT和原理揭示 

【NLP】一项NER实体提取任务_无水先生的博客 

【NLP】用NER自动实现简历摘要提取的案例 

第六单元:Transformers

深入了解“注意力”和“变形金刚” -第1部分 

用 Pytorch 自己构建一个Transformer 

【NLP】机器翻译相关原理 

【 NLP 】 句子transformer调用备忘录 

【NLP】transformers的位置编码 

【NLP】小项目:基于transformer的文本摘要 

 【NLP】分步图解transformer 数学示例 

【NLP】Transformer模型原理(1) 

【NLP】Transformer模型原理(2) 

第七单元:大语言模型

【NLP】GPT-2:通过可视化了解语言生成  

第八单元 :主题模型

【NLP】使用 LSA、PLSA、LDA 和 lda2Vec 进行主题建模 

【深度学习】基于BRET的高级主题检测- 

通过深度学习进行高级主题检测 

第九单元:NLP综合

自然语言入行必知的基础概念 

【NLP】KMP匹配算法 

【NLP】有限自动机的KMP算法_kmp自动机 

【NLP】从双曲面到双曲几何庞加莱盘 

【人工智能】人工智能和双曲几何 

【NLP】基于庞加莱损失函数的词嵌入模型 

【NLP模型】文本建模(1)(BoW、N-gram、tf-idf) 

语音识别:时间序列Damerau–Levenshtein距离_damerau-levenshtein 

 语音识别:时间序列的匹配算法(Needleman-Wunsch 算法)_时间匹配算法

【NLP】斯密斯-沃特曼的对齐算法(python)-CSDN博客

【NLP】自然语言处理之综述_自然语言处理综述-CSDN博客

 语音识别:时间序列的Smith–Waterman对齐算法_smith-waterman 

五、 栏目《NLP入门到精通》-后追加文章

(以上是该栏目的基本内容,下面是全部文章列出)

《NLP入门到精通》栏目导读(01/2)
【NLP模型】文本建模(2)TF-IDF关键词提取原理_tf-idf 关键词提取
【NLP概念源和流】 02-稠密文档表示(第 2/20 部分)
【NLP】 实施文本分类器_分类器 文本分析
【NLP】 文本技术方法指南
【NLP】PageRank、TextRank算法的原理解析_textrank和pagerank
【NLP概念源和流】 06-编码器-解码器模型(6/20 部分)_nlp解码器和编码器
【NLP概念源和流】 03-基于计数的嵌入,GloVe(第 3/20 部分)
【深度学习】编码器专题(01)
【深度学习】编码器专题(02)_mask: batch size, 1, sequence length (bool)
【NLP】基础工程:词嵌入_nlp词嵌入
【深度学习】 NLP和神经网络表示
【NLP】Word2vec概念和演进史_word2vec的发展
【深度学习】看似不合理实则有效的RNN
【NLP概念源和流】 04-过度到RNN(第 4/20 部分)
【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类
【深度学习】深度了解 LSTM 网络
【NLP】LSTM追根溯源
【NLP】理解LSTM的内在逻辑_lstm时间轴nlp的理解
【NLP】多头注意力概念(01)
【NLP】Attention机制和RNN_rnn attention机制
【NLP】使用BERT构建一个情绪分析模型_bert情绪分析模型
【NLP】BERT和原理揭示
【NLP】一项NER实体提取任务_nlp 给定一段新闻文本,本任务的目标是抽取出文本中的实体 代码
【NLP】用NER自动实现简历摘要提取的案例
深入了解“注意力”和“变形金刚” -第1部分
用 Pytorch 自己构建一个Transformer
【NLP】机器翻译相关原理
【 NLP 】 句子transformer调用备忘录_现在如何调用transformer
【NLP】transformers的位置编码
【NLP】小项目:基于transformer的文本摘要_transformer文本摘要
【NLP】分步图解transformer 数学示例
【NLP】Transformer模型原理(1)_a mathematical framework for transformer circuits.
【NLP】Transformer模型原理(2)
【NLP】GPT-2:通过可视化了解语言生成
【NLP】使用 LSA、PLSA、LDA 和 lda2Vec 进行主题建模
【深度学习】基于BRET的高级主题检测
通过深度学习进行高级主题检测
自然语言入行必知的基础概念
【NLP】KMP匹配算法
【NLP】从双曲面到双曲几何庞加莱盘_双叶双曲面 庞加莱圆盘 投影
【人工智能】人工智能和双曲几何_人工智能 几何
【NLP】基于庞加莱损失函数的词嵌入模型
【NLP模型】文本建模(1)(BoW、N-gram、tf-idf)_n-gram和bow
语音识别:时间序列Damerau–Levenshtein距离_damerau-levenshtein
语音识别:时间序列的匹配算法(Needleman-Wunsch 算法)_语音识别needleman-wunsch
【NLP】斯密斯-沃特曼的对齐算法(python)_python 实现smith-waterman算法局部比对
【NLP】自然语言处理之综述_nlp的综述最新
语音识别:时间序列的Smith–Waterman对齐算法_smith-waterman
Ubuntu系统如何连接WiFi_ubuntu wifi
Ubuntu知识: 文件压缩和解压?(zip指令)_ubuntu zip
【机器学习】了解 AUC - ROC 曲线_auroc曲线
机器视觉:ransac算法详解
halcon知识:常见三种模板匹配方法总结_halcon 模板匹配
《AI基本原理和python实现》栏目介绍
Simpy简介:python仿真模拟库-03/5
深度学习在语义分割中的进展与应用
机器学习指南:如何学习机器学习?
图卷积网络:GNN 简介【01/4】_pyg to_dense_adj
【NLP的python库(01/4) 】: NLTK_nltk.download('punkt') nltk.download('stopwords')
单词故事嵌入:通过自然语言处理解开叙事
RNN 单元:分析 GRU 方程与 LSTM,以及何时选择 RNN 而不是变压器
如何使用BERT生成单词嵌入?_bert如何做词向量嵌入
GPT 内部 — I : 了解文本生成
探索意义的深度:自然语言处理中的语义相似性
解码自我注意的魔力:深入了解其直觉和机制_注意力层的查询、键、值是模型参数吗
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
谷歌BERT:从自然语言处理(NLP)初学者到高级的综合指南_google bert
LLM;超越记忆《第 2 部分 》
LLM:《第 3 部分》从数学角度评估封闭式LLM的泛化能力
深入了解前馈网络、CNN、RNN 和 Hugging Face 的 Transformer 技术!_前馈神经网络和cnn的区别
保留网络[02/3]:大型语言模型转换器的继任者”_retnet中的γ是如何实现的
NLP:从头开始的文本矢量化方法_nlp 文本向量化
3 — NLP 中的标记化:分解文本数据的艺术_标记化技术的参数
LLM:《第 1 部分》只是一个记忆技巧吗?
深入理解注意力机制(上)-起源
大型语言模型:DistilBERT — 更小、更快、更便宜、更轻_中文大语言模型参数最小的是什么
ConvNets 与 Vision Transformers:数学深入探讨
情感分析工具: TextBlob 与 VADER 的对比_用textblob、vader,采用离散表示法,按照正面、负面、中性进行划分,以得出量化的数
用于自然语言处理的 Python:理解文本数据_python文本分析 提取数据含义
Ultra:知识图谱推理的基础模型
用于智能图像处理的计算机视觉和 NLP_图像 nlp
NLP 项目:维基百科文章爬虫和分类 - 语料库阅读器_wiki爬虫
使用大型语言模型进行文本摘要_大语言模型 多文档理解 摘要
ChatGPT 在机器学习中的应用_chartgpt机器学习
【TensorFlow Hub】:有 100 个预训练模型等你用_model = hub.keraslayer() 行人检测
变分自动编码器【03/3】:使用 Docker 和 Bash 脚本进行超参数调整
【NLP的python库(02/4) 】:Spacy_pycharm spacy语言模型
2、NLP文本预处理技术:词干提取和词形还原_nlp文本大纲提取
从NLP到聊天机器人_java nlp 聊天机器人
NLP:使用 SciKit Learn 的文本矢量化方法
【NLP的Python库(04/4)】:Flair_flair分类器
【Gensim概念】01/3 NLP玩转 word2vec_gensim.downloader.load
如何将转换器应用于时序模型
掌握 AI 和 NLP:深入研究 Python — 情感分析、NER 等
深入了解“注意力”和“变形金刚”-第2部分
【NLP概念源和流】 05-引进LSTM网络(第 5/20 部分)
【NLP概念源和流】 01-稀疏文档表示(第 1/20 部分)
【NLP】多头注意力概念(02)
【NLP】理解LSTM的内在逻辑
【人工智能数学:01 高等概率论】(2) 离散型概率空间_离散概率空间
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236095.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transformer详解【学习笔记】

文章目录 1、Transformer绪论2、Encoders和Decoder2.1 Encoders2.1.1 输入部分2.1.2 多头注意力机制2.1.3 残差2.1.4 LayNorm(Layer Normalization)2.1.5 前馈神经网路 2.2 Decoder2.2.1 多头注意力机制2.2.2 交互层 1、Transformer绪论 Transformer在做…

RabbitMQ(十)队列的声明方式

目录 1.编程式声明补充:RabbitTemplate 和 AmqpAdmin 的区别 2.声明式声明补充:new Queue() 和 QueueBuilder.durable(queueName).build() 的区别 背景: 在学习 RabbitMQ 的使用时, 经常会遇到不同的队列声明方式,有的…

Redis管道操作

文章目录 1. 问题提出2. 解决方案3. 案例演示4. 总结 1. 问题提出 如何优化频繁命令往返造成的性能瓶颈? Redis是一种基于C/S一级请求响应协议的TCP服务,一个请求会遵循一下步骤: 客户端向服务端发送命令分四步(发送命令-> …

个人网站制作 Part 1 | Web开发项目

文章目录 👩‍💻 基础Web开发练手项目系列:个人网站制作🚀 项目概述🔧 开发工具和环境配置🛠 项目实现步骤步骤 1: 创建HTML文件步骤 2: 添加CSS样式步骤 3: 链接CSS文件步骤 4: 添加JavaScript交互 &#…

Unity中向量的点乘、叉乘区别和作用以及经典案例

文章目录 点乘(Dot Product)叉乘(Cross Product)向量归一化(Normalize)其他作用 unity开发中我们要计算角度,判断位置,常用点乘、叉乘、归一化等等,我们看看他们的使用案…

tiktok_浅谈hook ios之发包x-ss-stub

frida-trace ios手机一部,需要越狱的电脑一台idacrackerXI 目标app: ipa 包,点击前往 密码:8urs 协议分析起始从抓包开始,个人习惯 一般安卓逆向可以直接搜关键词,但是ios 都在 Mach-O binary (reverse…

微服务-Gateway

案例搭建 官网地址 父Pom <com.alibaba.cloud.version>2.2.8.RELEASE</com.alibaba.cloud.version> <com.cloud.version>Hoxton.SR12</com.cloud.version> <com.dubbo.version>2.2.7.RELEASE</com.dubbo.version> <dependencyManagem…

SQL-DML增删改

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

Zynq 电源

ZYNQ芯片的电源分PS系统部分和PL逻辑部分&#xff0c;两部分的电源分别是独立工作。PS系统部分的电源和PL逻辑部分的电源都有上电顺序&#xff0c;不正常的上电顺序可能会导致ARM系统和FPGA系统无法正常工作。 PS部分的电源有VCCPINT、VCCPAUX、VCCPLL和PS VCCO。 VCCPINT为PS内…

thinkphp美容SPA管理系统源码带文字安装教程

thinkphp美容SPA管理系统源码带文字安装教程 运行环境 服务器宝塔面板 PHP 7.0 Mysql 5.5及以上版本 Linux Centos7以上 基于thinkphp3.23B-JUI1.2开发&#xff0c;权限运用了Auth类认证&#xff0c;权限可以细分到每个功能&#xff0c; 增删改查功能一应俱全&#xff0c;整合了…

低维度向量的 Householder 反射变换 matlab 图示

1, 算法原理 设th 是一个弧度值&#xff0c; 令 Q | cos(th) sin(th) | | sin(th) -cos(th) | S span{ | cos(th/2.0) | } | sin(th/2.0) | x (x1, x2) 是一个平面上的二维向量 计算 y Qx Qx 则&#xff0c;y 是 x 通过有 S 定…

函数——自制函数(c++)

今天进入自制函数。 自制函数&#xff0c;需要自己定义其功能。比如&#xff0c;设置一个没有参数没有返回值的积木&#xff0c;叫“aaa”。那么&#xff0c;如果想要运行“aaa”&#xff0c;就需要以下代码&#xff1a; void aaa(); 告诉系统有“aaa”…

Java快速排序希尔排序归并排序

快速排序算法 快速排序的原理&#xff1a;选择一个关键值作为基准值。比基准值小的都在左边序列&#xff08;一般是无序的&#xff09;&#xff0c;比基准值大的都在右边&#xff08;一般是无序的&#xff09;。一般选择序列的第一个元素。 一次循环&#xff1a;从后往前比较&…

基于Python实现身份证信息识别

目录 前言身份证信息识别的背景与意义自动识别身份证的需求 实现环境与工具准备Python编程语言OpenCV图像处理库Tesseract OCR引擎 身份证信息识别算法原理图像预处理步骤(图像裁剪、灰度化 、二值化、去噪)信息提取与解析 Python代码实现通过OCR提取身份证号码代码解析身份证信…

【QML COOK】- 008-自定义属性

前面介绍了用C定义QML类型&#xff0c;通常在使用Qt Quick开发项目时&#xff0c;C定义后端数据类型&#xff0c;前端则完全使用QML实现。而QML类型或Qt Quick中的类型时不免需要为对象增加一些属性&#xff0c;本篇就来介绍如何自定义属性。 1. 创建项目&#xff0c;并编辑Ma…

【Linux驱动】Linux的中断系统 | 中断的重要数据结构

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《Linux驱动》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 &#x1f3c0;Linux系统的中断⚽中断分类软中断和硬中断中断的上半部和下半部 ⚽tasklet⚽工…

基于uniapp封装的card容器 带左右侧两侧标题内容区域

代码 <template><view class"card"><div class"x_flex_header"><div><title v-if"title ! " class"title" :title"title" :num"num"></title></div><div><s…

系列四、Spring Security认证 授权(前后端不分离)

一、Spring Security认证 & 授权&#xff08;前后端不分离&#xff09; 1.1、MyWebSecurityConfigurerAdapter /*** Author : 一叶浮萍归大海* Date: 2024/1/11 21:50* Description:*/ Configuration public class MyWebSecurityConfigurerAdapter extends WebSecurityCo…

关注个人数据保护,肯尼亚发布新指南

近日&#xff0c;肯尼亚数据保护专员办公室&#xff08;ODPC&#xff09;发布了新的指导文件&#xff0c;旨在加强教育、通讯和数字信贷领域的数据保护措施&#xff0c;并提供了一个处理健康数据的通用指南。 这些指导意见是基于《数据保护法》&#xff08;DPA&#xff09;制定…

Appium 自动化测试

1.Appium介绍 1&#xff0c;appium是开源的移动端自动化测试框架&#xff1b; 2&#xff0c;appium可以测试原生的、混合的、以及移动端的web项目&#xff1b; 3&#xff0c;appium可以测试ios&#xff0c;android应用&#xff08;当然了&#xff0c;还有firefoxos&#xff09;…