PyTorch损失函数

一、损失函数是什么

损失函数:衡量模型输出与真实标签的差异
在这里插入图片描述

在这里插入图片描述

class _Loss(Module):def __init__(self, size_average=None, reduce=None, reduction='mean'):"""Loss函数的基类,定义了一些通用的属性和方法。参数:- size_average (bool, optional): 是否对损失值进行平均,默认为None。- reduce (bool, optional): 是否对损失值进行降维,默认为None。- reduction (str, optional): 损失值的降维方式,默认为'mean'。"""super(_Loss, self).__init__()if size_average is not None or reduce is not None:self.reduction = _Reduction.legacy_get_string(size_average, reduce)else:self.reduction = reduction

这段代码定义了一个Loss函数的基类 _Loss,用于定义其他具体的损失函数。在初始化方法 __init__ 中,该基类接受三个可选参数:size_averagereducereductionsize_averagereduce 用于确定是否对损失值进行平均和降维操作,reduction 则用于指定损失值的降维方式,默认为均值 'mean'

基类 _Loss 的作用是提供了一些通用的属性和方法,其他具体的损失函数可以继承该基类,并根据自己的需求重写或添加特定的属性和方法。

1、nn.CrossEntropyLoss

功能: nn.LogSoftmax ()与nn.NLLLoss ()结合,进行交叉熵计算

nn.CrossEntropyLoss 是 PyTorch 中用于计算交叉熵损失的函数。它是将 nn.LogSoftmaxnn.NLLLoss 结合在一起使用的。

主要参数如下:

  • weight:各类别的损失权重,默认为 None。
  • ignore_index:忽略某个类别的索引,默认为 None。
  • reduction:计算模式,可选值为 'none''sum''mean'
    • 'none':逐个元素计算损失。
    • 'sum':所有元素的损失值求和,返回一个标量。
    • 'mean':所有元素的损失值求平均,返回一个标量。

nn.CrossEntropyLoss 适用于多分类问题,输入的预测值是经过 nn.LogSoftmax 处理后的,目标值是类别的索引。它将预测值与目标值进行比较,计算交叉熵损失,并返回损失值。可以通过设置参数来调整损失的计算方式和权重,以满足实际需求。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


2、nn.NLLLoss

nn.NLLLoss 是 PyTorch 中用于计算负对数似然损失的函数。下面是该函数的主要参数说明:

  • weight:各类别的损失权重,默认为 None。可以使用一个 1D 张量来为每个类别指定不同的权重。如果设置为 None,则所有类别的权重都相等。
  • size_average:已弃用参数,不再使用。
  • ignore_index:忽略某个类别的索引,默认为 -100。在计算损失时,会忽略目标值中等于 ignore_index 的类别。
  • reduce:已弃用参数,不再使用。
  • reduction:计算模式,可选值为 'none''sum''mean'
    • 'none':逐个元素计算损失。
    • 'sum':所有元素的损失值求和,返回一个标量。
    • 'mean':所有元素的损失值求平均,返回一个标量。

nn.NLLLoss 的作用是实现负对数似然函数中的负号功能。它将预测值作为输入,目标值作为目标,计算负对数似然损失,并返回损失值。

在这里插入图片描述


3、nn.BCELoss

nn.BCELoss 是 PyTorch 中用于计算二分类交叉熵损失的函数。下面是该函数的主要参数说明:

  • weight:各类别的损失权重,默认为 None。可以使用一个 1D 张量来为每个类别指定不同的权重。如果设置为 None,则所有类别的权重都相等。
  • ignore_index:忽略某个类别的索引,默认为 None。在计算损失时,会忽略目标值中等于 ignore_index 的类别。
  • reduction:计算模式,可选值为 'none''sum''mean'
    • 'none':逐个元素计算损失。
    • 'sum':所有元素的损失值求和,返回一个标量。
    • 'mean':所有元素的损失值求平均,返回一个标量。

需要注意的是,nn.BCELoss 的输入值应该在 [0, 1] 的范围内,表示二分类任务中的概率值。该函数将预测值和目标值进行比较,计算二分类交叉熵损失,并返回损失值。可以通过设置参数来调整损失的计算方式、权重和忽略的类别,以满足实际需求。

在这里插入图片描述


4、 nn.BCEWithLogitsLoss

nn.BCEWithLogitsLoss 是结合了 Sigmoid 函数和二分类交叉熵损失的函数,并且在计算损失时,输入的网络输出值不需要经过 Sigmoid 函数。

下面是 nn.BCEWithLogitsLoss 的主要参数说明:

  • pos_weight:正样本的权重,默认为 None。可以使用一个标量或与目标张量形状相同的张量来为正样本指定不同的权重。如果设置为 None,则所有样本的权重都相等。
  • weight:各类别的损失权重,默认为 None。可以使用一个 1D 张量来为每个类别指定不同的权重。如果设置为 None,则所有类别的权重都相等。
  • ignore_index:忽略某个类别的索引,默认为 None。在计算损失时,会忽略目标值中等于 ignore_index 的类别。
  • reduction:计算模式,可选值为 'none''sum''mean'
    • 'none':逐个元素计算损失。
    • 'sum':所有元素的损失值求和,返回一个标量。
    • 'mean':所有元素的损失值求平均,返回一个标量。

需要注意的是,在使用 nn.BCEWithLogitsLoss 时,网络的最后一层不需要加上 Sigmoid 函数,因为该函数内部会自动将输入通过 Sigmoid 函数进行处理。nn.BCEWithLogitsLoss 将结合 Sigmoid 函数和二分类交叉熵损失来计算损失值,并返回结果。可以通过设置参数来调整损失的计算方式、权重和忽略的类别,以满足实际需求。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/237642.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QuEra 10,000个物理量子位和100个逻辑量子位的量子计算机2026

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

FineBI实战项目一(19):每小时订单笔数分析开发

点击新建组件,创建下每小时订单笔数组件。 选择饼图,拖拽cnt(总数)到角度,拖拽hourstr到颜色,调节内径。 修改现在的文字 拖拽组件到仪表盘。 效果如下:

泊松流生成模型简介

一、说明 泊松流生成模型 (PFGM) 是一种新型的生成深度学习模型,与扩散模型类似,其灵感来自物理学。在这本简单易懂的指南中了解 PFGM 背后的理论以及如何使用它们生成图像。 生成式人工智能模型在过去几年中取得了长足的进步。受物理启发的扩散…

element表格数据,表头上(下)角标,html字符串渲染

1. 问题描述 在动态渲染的element表格中&#xff0c;表头和表中数据是一个含有html的字符串&#xff0c;需要渲染 2. 效果 3. 代码 const columns ref([{ text: 差值<sub>-3</sub> / 10<sup>-6</sup>℃<sup>-1</sup>, value: aallowEr…

uniapp怎么开发插件并发布

今天耳机坏了,暂时内卷不了,所以想开发几个插件玩玩,也好久没写博客了,就拿这个来写了 首先,发布插件时需要你有项目 这里先拿uniapp创建一个项目, 如下,创建好的项目长这样 然后根据uniapp官网上说的,我们发布插件时,需要在uni_modules里面编写和发布 ps:还需要使用uniapp…

Redis 内存淘汰策略有哪些?过期数据如何删除?

Redis 在面试中出现的概率非常大&#xff0c;毕竟后端项目如果用到分布式缓存的话&#xff0c;一般用的都是 Redis。目前&#xff0c;还没有出现一个能够取代 Redis 的分布式缓存解决方案。 这篇文章中&#xff0c;我会分享几道 Redis 内存管理相关的问题&#xff0c;都很常见…

(分享) 音乐软件Spotify-声破天8.9.4

​【应用名称】&#xff1a;Spotify-声破天 ​【适用平台】&#xff1a;#Android ​【软件标签】&#xff1a;#Spotify ​【应用版本】&#xff1a;8.8.96 → 8.9.4 ​【应用大小】&#xff1a;67MB ​【软件说明】&#xff1a;软件升级更新。iOS可配合qx小火箭类的工具对…

什么类型的企业需要工单系统?适用场景与优势分析

在现代商业中&#xff0c;必须高效地管理与跟踪大量任务和工作流程。对一些企业而言&#xff0c;处理很多订单是一项具有挑战性的任务。此订单可能来自客户需求、内部问题反馈或各种业务流程中的任务分配。可是&#xff0c;如果没有好的解决方法&#xff0c;这类订单可能会致使…

科研绘图(四)火山图

火山图是生物信息学中常用的一种图表&#xff0c;用来显示基因表达数据的变化。它通常将每个点表示为一个基因&#xff0c;x轴显示对数比率&#xff08;log ratio&#xff09;&#xff0c;表示基因表达的变化大小&#xff1b;y轴显示-log10(p-value)&#xff0c;表示变化的统计…

极简云源码已经开源

源码介绍 极简云已经开源 解绑卡密 查询卡密 总体来说还是很完善的 对接例子网盘里有 用户注册需要配置邮箱 上网页QQ邮箱标准版开启SMTP 然后生成授权码 后台发信邮箱里填就对了 实在不会配置邮箱的 可以下载网盘里的reg.php 把reg.php上传源码里的user目录 之后注册就不需要…

【 ATU 随笔记 - Inverter 】PV Inverter 太阳能逆变器市场分析

一、简介 在上一篇的介绍中与大家分享了Micro Inverter ( 微型逆变器 )的用途与特色&#xff0c;也提到 Micro Inverter 适合家庭或是一些小型企业的需求。太阳能作为再生能源的代表&#xff0c;在当今能源转型中扮演着重要角色&#xff0c;也是有大型企业、大型能源站的需求&a…

解决JuPyter500:Internal Server Error问题

目录 一、问题描述 二、问题分析 三、解决方法 四、参考文章 一、问题描述 在启动Anaconda Prompt后&#xff0c;通过cd到项目文件夹启动Jupyter NoteBook点击.ipynb文件发生500报错。 二、问题分析 base环境下输入指令&#xff1a; jupyter --version 发现jupyter环境…

vulhub靶场之​Apache HTTPD 换行解析漏洞(CVE-2017-15715)​复现过程

Vulhub是一个基于docker和docker-compose的漏洞环境集合&#xff0c;进入对应目录并执行一条语句即可启动一个全新的漏洞环境&#xff0c;让漏洞复现变得更加简单&#xff0c;让安全研究者更加专注于漏洞原理本身。当你使用了这个靶场后你会发现真的是开箱即用&#xff0c;包括…

API(Date类,SimpleDateFormat类,Calendar类,JDK8时间相关类,包装类,算法小题)

文章目录 【常用API】今日内容教学目标 第一章 Date类1.1 Date概述1.2 Date常用方法 第二章 SimpleDateFormat类2.1 构造方法2.2 格式规则2.3 常用方法2.4 练习1(初恋女友的出生日期)2.5 练习2(秒杀活动) 第三章 Calendar类3.1 概述3.2 常用方法3.3 get方法示例3.4 set方法示例…

GAMES101-Assignment6

一、问题总览 需要加速结构来加速光线与场景的交点&#xff0c;本次练习中&#xff0c;重点关注物体划分算法Bounding Volume Hierarchy (BVH)。本练习要求实现Ray-Bounding Volume求交与BVH查找。 需要从上一次编程练习中引用以下函数: Render() in Renderer.cpp: 将你的光线…

行为型设计模式——命令模式

命令模式 日常生活中&#xff0c;我们出去吃饭都会遇到下面的场景。 定义&#xff1a; 将一个请求封装为一个对象&#xff0c;使发出请求的责任和执行请求的责任分割开。这样两者之间通过命令对象进行沟通&#xff0c;这样方便将命令对象进行存储、传递、调用、增加与管理。命…

【文献解读】“MOBILEViT:轻量级、通用目的、移动友好的视觉变换器”。

今天阅读这篇2022年ICLR会议上发表的论文&#xff0c;主要是为了学习MobileViT模型&#xff0c;用于YOLO模型主干改造。 一、文献概述 作者&#xff1a;Sachin Mehta 和 Mohammad Rastegari。地点&#xff1a;作者所属机构是 Apple。内容简述&#xff1a; 提出了一种名为Mob…

InternLM第4次课笔记

XTuner 大模型单卡低成本微调实战 1 Finetune介绍 2 XTuner介绍 XTuner中微调的技术&#xff1a; 3 8GB显卡玩转LLM 4 动手实战环节 https://github.com/InternLM/tutorial/tree/main/xtuner

20240107查看Android11下移远的4G模块EC20在Firefly的AIO-3399J开发板跑通时的相关服务

20240107查看Android11下移远的4G模块EC20在Firefly的AIO-3399J开发板跑通时的相关服务 2024/1/7 11:24 缘起&#xff1a;友善之臂的SDK&#xff1a;rk3399-android-11-r20211216.tar.xz可以跑通EC20&#xff0c;但是Toybrick的不行&#xff01; 同样是Andrid11&#xff0c;因此…