【论文阅读】Deep Graph Contrastive Representation Learning

目录

  • 0、基本信息
  • 1、研究动机
  • 2、创新点
  • 3、方法论
    • 3.1、整体框架及算法流程
    • 3.2、Corruption函数的具体实现
      • 3.2.1、删除边(RE)
      • 3.2.2、特征掩盖(MF)
    • 3.3、[编码器](https://blog.csdn.net/qq_44426403/article/details/135443921)的设计
      • 3.3.1、直推式学习
    • 3.4、损失函数的定义
    • 3.5、评估
    • 3.6、理论动机
      • 3.6.1、最大化目标函数等价于最大化互信息的下界
      • 3.6.2、三重损失
    • 3.7、实验参数设置
  • 4、代码实现
    • 4.1、RE and MF
    • 4.2、encorder
    • 4.3、GRACE
    • 4.4、loss

0、基本信息

  • 作者:Yanqiao Zhu Yichen Xu
  • 文章链接:Deep Graph Contrastive Representation Learning
  • 代码链接:Deep Graph Contrastive Representation Learning

1、研究动机

  • 现实世界中,图的标签数量较少,尽管GNNs蓬勃发展,但是训练模型时标签的可用性问题也越来越受到关心。

  • 传统的无监督图表征学习方法,例如DeepWalk和node2vec,以牺牲结构信息为代价过度强调邻近信息

  • 基于局部-全局互信息最大化框架的[[DGI]]模型,要求readout函数是单射的具有局限性,并且对节点特征随机排列,当特征矩阵稀疏时,不足以生成不同的上下文信息,导致难以学习对比目标

 本文提出的GRACE模型:首先,通过移除边和掩盖特征生成两个视图,然后最大化两个视图中结点嵌入的一致性。

2、创新点

  • 结点级图对比学习框架
  • 提出新的Corruption Function:删除边和特征掩盖

3、方法论

3.1、整体框架及算法流程

  • 首先,通过Corruption函数在原始图 G G G的基础上生成两个视图 G ~ 1 \tilde{G}_1 G~1 G ~ 2 \tilde{G}_2 G~2
  • 其次,通过编码器函数 f f f,生成两个视图的结点嵌入表征, U = f ( G ~ 1 ) U=f(\tilde{G}_1) U=f(G~1) V = f ( G ~ 2 ) V=f(\tilde{G}_2) V=f(G~2)
  • 计算对比目标函数 J \mathcal{J} J
  • 通过随机梯度下降更新参数;

GRACE的整体框架如下图所示:
在这里插入图片描述

3.2、Corruption函数的具体实现

 视图的生成是对比学习方法的关键组成部分,不同视图为每个节点提供不同的上下文,本文依赖不同视图中结点嵌入之间对比的对比方法,作者在结构和属性两个层次上破坏原始图,这为模型构建了不同的节点上下文,分别是删除边和掩蔽结点特征。

3.2.1、删除边(RE)

 随机删除原图中的部分边。
 首先,采样一个随机掩盖矩阵 R ~ ∈ { 0 , 1 } N × N \tilde{R}\in \{0,1\}^{N \times N} R~{0,1}N×N,矩阵中的每个元素服从伯努利分布,即 R ~ ∼ B ( 1 − p r ) \tilde{R}\sim \mathcal{B}(1-p_r) R~B(1pr) p r p_r pr是每条边被移除的概率;其次,用得到地掩盖矩阵与原始邻接矩阵做Hadamard积,最终得到的邻接矩阵为:
A ~ = A ∘ R ~ \tilde{A}=A\circ \tilde{R} A~=AR~
注意,上式为Hadamard积。

3.2.2、特征掩盖(MF)

 再结点特征中用零随机地掩盖部分特征。
 首先,采样一个随机向量 m ~ ∈ { 0 , 1 } F \tilde{m}\in\{0,1\}^F m~{0,1}F,向量的每个元素来自于伯努利分布,即 m ~ ∼ B ( 1 − p m ) \tilde{m}\sim \mathcal{B}(1-p_m) m~B(1pm) p r p_r pr是元素被掩盖的概率;其次,用得到地掩盖向量与原始特征做Hadamard积,最终得到的特征矩阵为:
X ~ = [ x 1 ∘ m ~ ; x 2 ∘ m ~ ; . . . ; x N ∘ m ~ ; ] \tilde{X}=[x_1 \circ\tilde{m};x_2 \circ\tilde{m};...;x_N \circ\tilde{m};] X~=[x1m~;x2m~;...;xNm~;]
注意, [ . ; . ] [.;.] [.;.]是连接运算符。

3.3、编码器的设计

 针对不同任务,transductive learning、inductive learning on large graphs和inductive learning on multiple graphs,设计不同的编码器。这里仅仅列出transductive learning的编码器设计,其他任务编码器的设计请阅读原文4.2节实验设置

3.3.1、直推式学习

 直推式学习采用了一个两层的GCN作为编码器。编码器 f f f的形式如下:
G C i ( X , A ) = σ ( D ^ 1 2 A ^ D ^ 1 2 X W i ) GC_i(X,A)=\sigma(\hat{D}^{\frac{1}{2}}\hat{A}\hat{D}^{\frac{1}{2}}XW_i) GCi(X,A)=σ(D^21A^D^21XWi)
f ( X , A ) = G C 2 ( G C 1 ( X , A ) , A ) f(X,A)=GC_2(GC_1(X,A),A) f(X,A)=GC2(GC1(X,A),A)
其中, A ^ = A + I \hat{A}=A+I A^=A+I D ^ \hat{D} D^ A ^ \hat{A} A^的度矩阵, σ ( . ) \sigma(.) σ(.)为激活函数,例如 R e L U ( . ) = m a x ( 0 , . ) \mathrm{ReLU}(.)=max(0,.) ReLU(.)=max(0,.) W i W_i Wi为可训练的权重矩阵。

3.4、损失函数的定义

 对比目标,即判别器,是将两个来自不同视图相同结点的嵌入与其他结点区分开来,最大化嵌入之间的结点级的一致性。

 对于任意一个结点 v i v_i vi,在第一个视图中的嵌入为 u i \mathbf{u}_i ui,被视作锚;在另外一个视图中的嵌入为 v i \mathbf{v}_i vi,形成正样本,两个视图中出 v i v_i vi之外的结点嵌入被视为负样本。

 简单而言,正样本:同一结点在不同视图的嵌入被视作正样本对;负样本包含两类:(1)intra-view:同一视图中的不同结点对(2)inter-view:不同视图中的不同结点对。

 判别函数定义为 θ ( u , v ) = s ( g ( u ) , g ( v ) ) \theta(u,v)=s(g(u),g(v)) θ(u,v)=s(g(u),g(v)) s s s为cosine相似度,g为非线性映射,例如两层的MLP。

综上所述,目标函数定义为:

ℓ ( u i , v i ) = log ⁡ e θ ( u i , v i ) / τ e θ ( u i , v i ) / τ ⏟ the positive pair + ∑ k = 1 N 1 [ k ≠ i ] e θ ( u i , v k ) / τ ⏟ inter-view negaive pairs + ∑ k = 1 N 1 [ k ≠ i ] e θ ( u i , u k ) / τ ⏟ intra-view negative pairs \ell(\boldsymbol{u}_i,\boldsymbol{v}_i)=\log\frac{e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_i)/\tau}}{\underbrace{e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_i)/\tau}}_{\text{the positive pair}}+\underbrace{\sum _ { k = 1 }^N\mathbb{1}_{[k\neq i]}e^{\theta(\boldsymbol{u}_i,\boldsymbol{v}_k)/\tau}}_{\text{inter-view negaive pairs}}+\underbrace{\sum _ { k = 1 }^N\mathbb{1}_{[k\neq i]}e^{\theta(\boldsymbol{u}_i,\boldsymbol{u}_k)/\tau}}_{\text{intra-view negative pairs}}} (ui,vi)=logthe positive pair eθ(ui,vi)/τ+inter-view negaive pairs k=1N1[k=i]eθ(ui,vk)/τ+intra-view negative pairs k=1N1[k=i]eθ(ui,uk)/τeθ(ui,vi)/τ

其中, 1 [ k ≠ i ] ∈ { 0 , 1 } \mathbb{1}_{[k\neq i]}\in\{0,1\} 1[k=i]{0,1}是一个指示函数,当且仅当 k ≠ i k \neq i k=i时定于1。两个视图是对称的,另一个视图定义类似 ℓ ( v i , u i ) \ell(\boldsymbol{v}_i,\boldsymbol{u}_i) (vi,ui),最后,要最大化的总体目标被定义为:

J = 1 2 N ∑ i = 1 N [ ℓ ( u i , v i ) + ℓ ( v i , u i ) ] \mathcal{J}=\dfrac{1}{2N}\sum_{i=1}^N\left[\ell(\boldsymbol{u}_i,\boldsymbol{v}_i)+\ell(\boldsymbol{v}_i,\boldsymbol{u}_i)\right] J=2N1i=1N[(ui,vi)+(vi,ui)]

3.5、评估

 类似于DGI中的线性评估方案,模型首先以无监督的方式训练,得到的嵌入被用来训练逻辑回归分类器并做测试。

3.6、理论动机

3.6.1、最大化目标函数等价于最大化互信息的下界

 定理1说明了目标函数 J \mathcal{J} J是InfoNCE目标函数的一个下界,而InfoNCE评估器是MI(即互信息)的下界,所以 J ≤ I ( X ; U , V ) \mathcal{J} \le I(X;U,V) JI(X;U,V)
所以,最大化目标函数 J \mathcal{J} J等价于最大化输入节点特征和学习节点表示之间的互信息 I ( X ; U , V ) I(X;U,V) I(X;U,V)的下界

3.6.2、三重损失

 定理2说明了最小化目标函数与最大化三重损失一致。更详细的证明请看原文。

triplet Loss是深度学习中的一种损失函数,用于训练差异性较小的样本,如人脸等。在人脸识别领域,triplet loss常被用来提取人脸的embedding。 输入数据是一个三元组,包括锚(Anchor)例、正(Positive)例、负(Negative)例,通过优化锚示例与正示例的距离小于锚示例与负示例的距离,实现样本的相似性计算。

3.7、实验参数设置

Dataset p m , 1 p_{m,1} pm,1 p m , 2 p_{m,2} pm,2 p r , 1 p_{r,1} pr,1 p r , 2 p_{r,2} pr,2lrwdepochhidfeatactivation
Cora0.30.40.20.40.0051e-5200128ReLU
Citeseer0.30.20.20.00.0011e-5200256PReLU
Pubmed0.00.20.40.10.0011e-51500256ReLU

4、代码实现

完整代码见
链接:https://pan.baidu.com/s/1g9Rhe1EjxBZ0dFgOfy3CSg
提取码:6666

4.1、RE and MF

from dgl.transforms import DropEdge
#RE
#随机删除边——使用dgl内建库DropEdge
#MF
#随机掩盖特征
def drop_feature(x, drop_prob):drop_masks=[]for i in range(x.shape[0]):drop_mask = torch.empty(size= (x.size(1),) ,dtype=torch.float32,device=x.device).uniform_(0, 1) < drop_probdrop_masks.append(drop_mask)x = x.clone()for i,e in enumerate(drop_masks):x[i,e] = 0return x

4.2、encorder

import dgl
import torch.nn as nn
from dgl.nn.pytorch import GraphConv
from model.GCNLayer import GCNLayerclass Encoder(nn.Module):def __init__(self, infeat: int, outfeat: int, act_func,base_model=GraphConv, k: int = 2):super(Encoder, self).__init__()self.base_model = base_modelassert k >= 2self.k = kself.convs = nn.ModuleList()self.convs.append(base_model(infeat, 2 * outfeat))for _ in range(1, k-1):self.convs.append(base_model(2 * outfeat, 2 * outfeat))self.convs.append(base_model(2 * outfeat, outfeat))self.act_func = act_funcdef forward(self, g, x ):#g = dgl.add_self_loop(g)for i in range(self.k):x = self.act_func(self.convs[i](g,x))return x

4.3、GRACE

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from dgl.nn.pytorch import GraphConv
from model.encoder import Encoder
class GRACE(nn.Module):def __init__(self,infeat,hidfeat,act_func,k=2) -> None:super(GRACE,self).__init__()self.encoder = Encoder(infeat,hidfeat,act_func,base_model=GraphConv,k=k)def forward(self,g,x):z =self.encoder(g,x)return z

4.4、loss

import torch
import torch.nn as nn
import torch.nn.functional as F
class LossFunc(nn.Module):def __init__(self, infeat,hidfeat,outfeat,tau) -> None:super(LossFunc,self).__init__()self.tau = tauself.layer1 = nn.Linear(infeat,hidfeat)self.layer2 = nn.Linear(hidfeat,outfeat)def projection(self,x):x = F.elu(self.layer1(x))x = self.layer2(x)return xdef sim(self,x,y):x = F.normalize(x)y = F.normalize(y)return torch.mm(x, y.t())def sim_loss(self,h1,h2):f = lambda x : torch.exp(x/self.tau)#exp(\theta(u_i,u_j)/tau)intra_sim = f(self.sim(h1,h1))#exp(\theta(u_i,v_j)/tau)inter_sim = f(self.sim(h1,h2))return -torch.log(inter_sim.diag() / (intra_sim.sum(1) + inter_sim.sum(1) - intra_sim.diag()))def forward(self,u,v):h1 = self.projection(u)h2 = self.projection(v)loss1 = self.sim_loss(h1,h2)loss2 = self.sim_loss(h2,h1)loss_sum = (loss1 + loss2) * 0.5res = loss_sum.mean()return res

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/240878.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS实现的 Loading 效果

方式一、纯CSS实现 代码&#xff1a;根据需要复制 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>CSS Animation Library for Developers and Ninjas</title><style>/* ---------------…

.net core 6 使用注解自动注入实例,无需构造注入 autowrite4net

像java使用autowrite一样使用 1、前提先注册到ioc容器当中 builder.Services.AddScoped 2、nuget引入AutoWrite4Net 3、启用 //启用自动注入 app.UseAutoWrite(); 4、在类上使用注解 [StartAutoWrite] public class NacosController : ControllerBase 5、实例上使用注解 …

【Redis】AOF 源码

在上篇, 我们已经从使用 / 机制 / AOF 过程中涉及的辅助功能等方面简单了解了 Redis AOF。 这篇将从源码的形式, 进行深入的了解。 1 Redis 整个 AOF 主要功能 Redis 的 AOF 功能概括起来就 2 个功能 AOF 同步: 将客户端发送的变更命令, 保存到 AOF 文件中AOF 重写: 随着 Red…

新能源汽车智慧充电桩方案:基于视频监控的可视化智能监管平台

一、方案概述 TSINGSEE青犀&触角云新能源汽车智慧充电桩方案围绕互联网、物联网、车联网、人工智能、视频技术、大数据、4G/5G等技术&#xff0c;结合云计算、移动支付等&#xff0c;实现充电停车一体化、充电桩与站点管理等功能&#xff0c;达到充电设备与站点的有效监控…

橘子学K8S04之重新认识Docker容器

我们之前分别从 Linux Namespace 的隔离能力、Linux Cgroups 的限制能力&#xff0c;以及基于 rootfs 的文件系统三个角度来理解了一下关于容器的核心实现原理。 这里一定注意说的是Linux环境&#xff0c;因为Linux Docker (namespaces cgroups rootfs) ! Docker on Mac (bas…

Dockerfile镜像实战

目录 一 构建SSH镜像 1.开启ip转发功能 2. 准备工作目录 3.修改配置文件 5.启动容器并修改root密码 二 构建Systemctl镜像 1. 准备工作目录 ​编辑2.修改配置文件 3.生成镜像 4.启动容器&#xff0c;并挂载宿主机目录挂载到容器中&#xff0c;进行初始化 5.进入容器 三…

npm install 无反应 npm run serve 无反应

说明情况&#xff1a;其实最开始我就是发现我跟着黑马的苍穹外卖的前端day2的环境搭建做的时候&#xff0c;到这一步出现了问题&#xff0c;无论我怎么 npm install 和 npm run serve 都没有像黑马一样有很多东西进行加载&#xff0c;因此我换了一种方法 1.在这个文件夹下cmd …

SPI传感器接口设计与优化:基于STM32的实践

SPI&#xff08;串行外设接口&#xff09;是一种常用的串行通信协议&#xff0c;用于在微控制器和外部设备之间进行全双工的高速数据传输。在本文中&#xff0c;我们将探讨如何基于STM32微控制器设计和优化SPI传感器接口&#xff0c;并提供相应的代码示例。 1. SPI传感器接口设…

使用docker部署RStudio容器并结合内网穿透实现公网访问

文章目录 前言1. 安装RStudio Server2. 本地访问3. Linux 安装cpolar4. 配置RStudio server公网访问地址5. 公网远程访问RStudio6. 固定RStudio公网地址 前言 RStudio Server 使你能够在 Linux 服务器上运行你所熟悉和喜爱的 RStudio IDE&#xff0c;并通过 Web 浏览器进行访问…

Web Animation API

工作中经常会遇到需要动画的场景&#xff0c;连贯动画都是用CSS实现&#xff0c;&#xff0c;但是如果遇到需要用户互动介入的动画&#xff0c;那纯CSS很比较吃力&#xff0c;也不是不能实现&#xff0c;需要动态修改CSS变量&#xff0c;而且动画容易被JS代码阻塞&#xff0c;导…

mysql-实战案例 (超详细版)

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

什么是小程序?特点和技术架构详解

小程序是一种新的移动应用程序格式&#xff0c;一种结合了 Web 技术以及客户端技术的混合解决方案。 传统的原生应用运行起来比较流畅&#xff0c;但是也有天然的基因缺陷&#xff1a; 不支持动态化&#xff0c;发布周期长需要开发Android和iOS两套代码&#xff0c;开发成本高…

IIS 缓存, 更新后前端资源不能更新问题

解决办法: 通常只需要index.html 不缓存即可, 其他文件都是根据index.html 中的引用去加载; 正确的做法是在 站点下增加 web.config 文件, 内容如下: 我这个是因为目录下有个config.js 配置文件, 也不能缓存, 所以加了两个 <?xml version"1.0" encoding&quo…

探索设计模式的魅力:抽象工厂模式的艺术

抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;用于在不指定具体类的情况下创建一系列相关或相互依赖的对象。它提供了一个接口&#xff0c;用于创建一系列“家族”或相关依赖对象&#xff0c;而无需指定它们的具体类。 主要参…

Verilog基础:强度建模(一)

相关阅读 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html?spm1001.2014.3001.5482 一、强度建模基础 Verilog HDL提供了针对线网信号0、1、x、z的精准强度建模方式&#xff0c;这样可以允许将两个线网信号进行线与操作从而更加精确地描述出硬件行…

实战之-Redis商户查询缓存

一、什么是缓存? 前言:什么是缓存? 就像自行车,越野车的避震器 举个例子:越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样; 同样,实际开发中,系统也需要"避震器",防止过高…

HANA:存储过程(Procedures) DBUG

作者 idan lian 如需转载备注出处 如果对你有帮助&#xff0c;请点赞收藏~~~ 1.场景 最近不是写了蛮多hana的存储过程吗&#xff0c;如果是简单的增删改查&#xff0c;如果结果错了&#xff0c;还是比较容易找到错误在哪的&#xff0c;但是逐渐假如循环啊&#xff0c;变量判…

Git项目分支管理规范

一、分支管理 创建项目时&#xff0c;会针对不同环境创建两个常设分支(也可以算主分支&#xff0c;永久不会删除) master&#xff1a;生产环境的稳定分支&#xff0c;生产环境基于该分支构建。仅用来发布新版本&#xff0c;除了从release测试分支或 hotfix-*Bug修复分支进行m…

docker部署Jira+配置MySQL8数据库

写在前面&#xff1a;如果你通过docker安装Jira且启动过&#xff0c;然后你现在又想使用mysql数据库&#xff0c;需要注意 你除了停掉原有容器&#xff0c;还需要删除&#xff1a;/var/lib/docker/volumes/jiraVolume/_data下的文件&#xff0c;否则启动后会无法正常使用。注意…

TypeScript 从入门到进阶之基础篇(十) 抽象类篇

系列文章目录 TypeScript 从入门到进阶系列 TypeScript 从入门到进阶之基础篇(一) ts基础类型篇TypeScript 从入门到进阶之基础篇(二) ts进阶类型篇TypeScript 从入门到进阶之基础篇(三) 元组类型篇TypeScript 从入门到进阶之基础篇(四) symbol类型篇TypeScript 从入门到进阶…