【人工智能课程】计算机科学博士作业一

【人工智能课程】计算机科学博士作业一

1 任务要求

  • 模型拟合:用深度神经网络拟合一个回归模型。从各种角度对其改进,评价指标为MSE。
  • 掌握技巧:
    • 熟悉并掌握深度学习模型训练的基本技巧。
    • 提高PyTorch的使用熟练度。
    • 掌握改进深度学习的方法。

在这里插入图片描述

数据集下载:

  • Kaggle下载数据:
    https://www.kaggle.com/competitions/ml2022spring-hw1
  • 百度云下载数据: https://pan.baidu.com/s/1ahGxV7dO2JQMRCYbmDQyVg (提取码:ml22)

这是一个非时间序列的回归任务,预测公共场所获取的人群数据,预测会发生COVID-19阳性的人数。改进角度,参考博客:http://t.csdnimg.cn/fUAzT

在这里插入图片描述

2 baseline 代码

我将老师给的代码重构了结构,便于组员之间协作编程,无需修改的代码都放到了utils.py中。只需要修改特征选择、神经网络、模型训练部分的代码就可以。

2.1 导入包

# 数值、矩阵操作
import math
# 数据读取与写入make_dot
import pandas as pd
import os
import csv
# 学习曲线绘制
from torch.utils.tensorboard import SummaryWriter
from utils import *

2.2 数据读取

# 设置随机种子便于复现
same_seed(config['seed'])# 训练集大小(train_data size) : 2699 x 118 (id + 37 states + 16 features x 5 days) 
# 测试集大小(test_data size): 1078 x 117 (没有label (last day's positive rate))
pd.set_option('display.max_column', 200) # 设置显示数据的列数
train_df, test_df = pd.read_csv('./covid.train.csv'), pd.read_csv('./covid.test.csv')
display(train_df.head(3)) # 显示前三行的样本
train_data, test_data = train_df.values, test_df.values
del train_df, test_df # 删除数据减少内存占用
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])# 打印数据的大小
print(f"""train_data size: {train_data.shape} 
valid_data size: {valid_data.shape} 
test_data size: {test_data.shape}""")

2.3 特征选择

def select_feat(train_data, valid_data, test_data, select_all=True):'''特征选择选择较好的特征用来拟合回归模型'''y_train, y_valid = train_data[:,-1], valid_data[:,-1]raw_x_train, raw_x_valid, raw_x_test = train_data[:,:-1], valid_data[:,:-1], test_dataif select_all:feat_idx = list(range(raw_x_train.shape[1]))else:feat_idx = [0,1,2,3,4] # TODO: 选择需要的特征 ,这部分可以自己调研一些特征选择的方法并完善.return raw_x_train[:,feat_idx], raw_x_valid[:,feat_idx], raw_x_test[:,feat_idx], y_train, y_valid# 特征选择
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])# 打印出特征数量.
print(f'number of features: {x_train.shape[1]}')train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \COVID19Dataset(x_valid, y_valid), \COVID19Dataset(x_test)# 使用Pytorch中Dataloader类按照Batch将数据集加载
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

2.4 神经网络

class My_Model(nn.Module):def __init__(self, input_dim):super(My_Model, self).__init__()# TODO: 修改模型结构, 注意矩阵的维度(dimensions) self.layers = nn.Sequential(nn.Linear(input_dim, 16),nn.ReLU(),nn.Linear(16, 8),nn.ReLU(),nn.Linear(8, 1))def forward(self, x):x = self.layers(x)x = x.squeeze(1) # (B, 1) -> (B)return x

2.5 模型训练

def trainer(train_loader, valid_loader, model, config, device):criterion = nn.MSELoss(reduction='mean') # 损失函数的定义# 定义优化器# TODO: 可以查看学习更多的优化器 https://pytorch.org/docs/stable/optim.html # TODO: L2 正则( 可以使用optimizer(weight decay...) )或者 自己实现L2正则.optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9) # tensorboard 的记录器# 将 train loss 保存到 "tensorboard/train" 文件夹train_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'train'))# 将 valid loss 保存到 "tensorboard/valid" 文件夹valid_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'valid'))if not os.path.isdir('./models'):# 创建文件夹-用于存储模型os.mkdir('./models')n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0for epoch in range(n_epochs):model.train() # 训练模式loss_record = []# tqdm可以帮助我们显示训练的进度  train_pbar = tqdm(train_loader, position=0, leave=True)# 设置进度条的左边 : 显示第几个Epoch了train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')for x, y in train_pbar:optimizer.zero_grad()               # 将梯度置0.x, y = x.to(device), y.to(device)   # 将数据一到相应的存储位置(CPU/GPU)pred = model(x)             loss = criterion(pred, y)loss.backward()                     # 反向传播 计算梯度.optimizer.step()                    # 更新网络参数step += 1loss_record.append(loss.detach().item())# 训练完一个batch的数据,将loss 显示在进度条的右边train_pbar.set_postfix({'loss': loss.detach().item()})mean_train_loss = sum(loss_record)/len(loss_record)model.eval() # 将模型设置成 evaluation 模式.loss_record = []for x, y in valid_loader:x, y = x.to(device), y.to(device)with torch.no_grad():pred = model(x)loss = criterion(pred, y)loss_record.append(loss.item())mean_valid_loss = sum(loss_record)/len(loss_record)print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')# 每个epoch,在tensorboard 中记录验证的损失(后面可以展示出来)# 将训练损失和验证损失写入TensorBoardtrain_writer.add_scalar('Train-Valid Loss', mean_train_loss, step)valid_writer.add_scalar('Train-Valid Loss', mean_valid_loss, step)if mean_valid_loss < best_loss:best_loss = mean_valid_losstorch.save(model.state_dict(), config['save_path']) # 模型保存print('Saving model with loss {:.3f}...'.format(best_loss))early_stop_count = 0else: early_stop_count += 1if early_stop_count >= config['early_stop']:print('\nModel is not improving, so we halt the training session.')returndevice = 'cuda' if torch.cuda.is_available() else 'cpu'
model = My_Model(input_dim=x_train.shape[1]).to(device) # 将模型和训练数据放在相同的存储位置(CPU/GPU)
trainer(train_loader, valid_loader, model, config, device)

2.6 模型可视化

%reload_ext tensorboard
%tensorboard --logdir=tensorboard
#执行完后这两行代码,在浏览器打开:http://localhost:6006/

打开后,将smoothing调为0,就不会有四条曲线了。如果不改为0,就会自动加入一条平滑后的曲线在图中,影响观察。
在这里插入图片描述

2.7 模型评价

model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
MSE = predict_MSE(valid_loader, model, device) print("MSE:",MSE) 

只跑了10epoch的MSE
MSE: 30.798155

2.8 新建一个utils.py文件

把以下代码放进去utils.py文件中,放到和以上代码文件同一级的目录

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import numpy as np
from tqdm import tqdmconfig = {'seed': 5201314,      # 随机种子,可以自己填写. :)'select_all': True,   # 是否选择全部的特征'valid_ratio': 0.2,   # 验证集大小(validation_size) = 训练集大小(train_size) * 验证数据占比(valid_ratio)'n_epochs': 10,     # 数据遍历训练次数'batch_size': 256,'learning_rate': 1e-5,'early_stop': 400,    # 如果early_stop轮损失没有下降就停止训练.'save_path': './models/model.ckpt'  # 模型存储的位置
}def same_seed(seed):'''设置随机种子(便于复现)'''torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falsenp.random.seed(seed)torch.manual_seed(seed)if torch.cuda.is_available():torch.cuda.manual_seed_all(seed)print(f'Set Seed = {seed}')def train_valid_split(data_set, valid_ratio, seed):'''数据集拆分成训练集(training set)和 验证集(validation set)'''valid_set_size = int(valid_ratio * len(data_set))train_set_size = len(data_set) - valid_set_sizetrain_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))return np.array(train_set), np.array(valid_set)def predict(test_loader, model, device):model.eval() # 设置成eval模式.preds = []for x in tqdm(test_loader):x = x.to(device)with torch.no_grad():pred = model(x)preds.append(pred.detach().cpu())preds = torch.cat(preds, dim=0).numpy()return predsdef predict_MSE(valid_loader, model, device):model.eval() # 设置成eval模式.preds = []labels = []for x,y in tqdm(valid_loader):x = x.to(device)with torch.no_grad():pred = model(x)preds.append(pred.detach().cpu())labels.append(y)preds = torch.cat(preds, dim=0).numpy()labels = torch.cat(labels, dim=0).numpy()# 计算MSEmse = np.mean((preds - labels) ** 2)return mseclass COVID19Dataset(Dataset):'''x: np.ndarray  特征矩阵.y: np.ndarray  目标标签, 如果为None,则是预测的数据集'''def __init__(self, x, y=None):if y is None:self.y = yelse:self.y = torch.FloatTensor(y)self.x = torch.FloatTensor(x)def __getitem__(self, idx):if self.y is None:return self.x[idx]return self.x[idx], self.y[idx]def __len__(self):return len(self.x)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242134.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫IP池

目录 一、介绍 1.1 为什么需要IP池&#xff1f; 1.2 IP池与代理池的区别 二、构建一个简单的IP池 三、注意事项 一、介绍 在网络爬虫的世界中&#xff0c;IP池是一个关键的概念。它允许爬虫程序在请求网页时使用多个IP地址&#xff0c;从而降低被封禁的风险&#xff0c;提高…

springcloud OpenFeign服务接口调用

文章目录 代码下载地址OpenFeign简介OpenFeign使用步骤测试 OpenFeign超时控制超时设置&#xff0c;故意设置超时演示出错情况服务提供方8001故意写暂停程序服务消费方80添加超时方法PaymentFeignService服务消费方80添加超时方法OrderFeignController测试YML文件里需要开启Ope…

五、模 板

1 泛型编程 以往我们想实现一个通用的交换函数&#xff0c;可能是通过下面的方式来实现的&#xff1a; void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, double& right) {double temp left;left ri…

算法练习-A+B/财务管理/实现四舍五入/牛牛的菱形字符(题目链接+题解打卡)

难度参考 难度&#xff1a;简单 分类&#xff1a;熟悉OJ与IDE的操作 难度与分类由我所参与的培训课程提供&#xff0c;但需要注意的是&#xff0c;难度与分类仅供参考。以下内容均为个人笔记&#xff0c;旨在督促自己认真学习。 题目 A B1. A B - AcWing题库财务管理1004:财…

【迅搜19】扩展(二)TNTSearch和JiebaPHP方案

扩展&#xff08;二&#xff09;TNTSearch和JiebaPHP方案 搜索引擎系列的最后一篇了。既然是最后一篇&#xff0c;那么我们也轻松一点&#xff0c;直接来看一套非常有意思的纯 PHP 实现的搜索引擎及分词方案吧。这一套方案由两个组件组成&#xff0c;一个叫 TNTSearch &#xf…

成都力寰璨泓科技有限公司抖音小店品质之选

在繁杂的电商市场中&#xff0c;如何选择一家值得信赖的店铺成为了消费者关注的焦点。今天&#xff0c;我要为大家介绍的是一家在抖音平台上备受好评的公司——成都力寰璨泓科技有限公司抖音小店。这家店铺凭借其优质的产品和服务&#xff0c;成为了众多消费者的首选&#xff0…

【C++】string的基本使用

从这篇博客开始&#xff0c;我们的C部分就进入到了STL&#xff0c;STL的出现可以说是C发展历史上非常关键的一步&#xff0c;自此C和C语言有了较为明显的差别。那么什么是STL呢&#xff1f; 后来不断的演化&#xff0c;发展成了知名的两个版本&#xff0c;一个叫做P.J.版本&am…

探索图像检索:从理论到实战的应用

目录 一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术 三、图像检索技术代码示例图像特征提取示例相似度计算索引技术 四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化 五、实际应用图像…

国科大模式识别与机器学习2015-2019、2021、2023仅考题

2015 &#xff08;8&#xff09;试描述线性判别函数的基本概念&#xff0c;并说明既然有线性判别函&#xff0c;为什么还需要非线性判别函数&#xff1f;假设有两种模式&#xff0c;每类包括6个4维不同的模式&#xff0c;且良好分布。如果他们是线性可分的。问权向量至少需要几…

Spark流式读取文件数据

流式读取文件数据 from pyspark.sql import SparkSession ss SparkSession.builder.getOrCreate() # todo 注意1&#xff1a;流式读取目录下的文件 --》一定一定要是目录&#xff0c;不是具体的文件&#xff0c;# 目录下产生新文件会进行读取# todo 注意点2&#xff1…

工业企业能源管理平台,可以帮助企业解决哪些方面的能源问题?

随着全球工业化进程的加快&#xff0c;工业企业在生产经营过程中消耗的能源也越来越庞大。能源成本的上升和环境保护的压力使得工业企业对能源管理的重要性有了深刻的认识。为了提高能源利用效率、降低能源消耗、减少环境污染&#xff0c;工业企业在能源管理方面迫切需要一套规…

APP测试基本流程以及APP测试要点梳理,保证您看了不后悔!

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

SpringBoot Redis入门(四)——Redis单机、哨兵、集群模式

单机模式&#xff1a;单台缓存服务器&#xff0c;开发、测试环境下使用&#xff1b;哨兵模式&#xff1a;主-从模式&#xff0c;提高缓存服务器的高可用和安全性。所有缓存的数据在每个节点上都一致。每个节点添加监听器&#xff0c;不断监听节点可用状态&#xff0c;一旦主节点…

鸿蒙原生应用/元服务开发-延迟任务说明(一)

一、功能介绍 应用退至后台后&#xff0c;需要执行实时性要求不高的任务&#xff0c;例如有网络时不定期主动获取邮件等&#xff0c;可以使用延迟任务。当应用满足设定条件&#xff08;包括网络类型、充电类型、存储状态、电池状态、定时状态等&#xff09;时&#xff0c;将任务…

Qt 5.15.2 (MSVC 2019)编译 QWT 6.2.0 : 编译MingW或MSVC遇到的坑

MingW下编译QWt 6.2.0 下载qwt最新版本&#xff0c;用git工具 git clone下载源码 git clone https://git.code.sf.net/p/qwt/git qwt-git 或者使用我下载的 qwt 2.6.0 链接&#xff1a;https://pan.baidu.com/s/1KZI-L10N90TJobeqqPYBqw?pwdpq1o 提取码&#xff1a;pq1o 下载…

匿名/箭头函数,立即执行函数IIFE;函数声明式和函数表达式

目录 匿名/箭头函数&#xff1a;简洁 继承上一层作用域链的this 不绑定arguments,用rest参数 rest 参数&#xff1a;...真正的数组 因为没有function声明&#xff0c;所以没有原型prototype&#xff0c;所以不能作为构造函数 当函数体只有一句时&#xff0c;可省 return ,…

【Linux第二课-权限】操作系统、Linux用户、Linux权限、Linux文件类型、粘滞位

目录 操作系统shell外壳为什么有shell外壳shell外壳是什么shell外壳工作原理 Linux用户root用户与非root用户root用户与普通用户的切换普通用户 --> root用户root用户 --> 普通用户普通用户 --> 普通用户对一条指令提升为root权限进行执行 Linux权限Linux中的权限角色…

Elasticsearch Windows部署-ELK技术栈

1、下载Elasticsearch、kibana、logstash 本文不介绍ELK相关原理知识&#xff0c;只记录部署操作过程 下载地址Past Releases of Elastic Stack Software | Elastic 选择同一版本&#xff0c;这里选择是当前最新版本8.11.3 解压放在同目录下&#xff0c;方便后续操作与使用 …

OpenCV-Python(51):基于Haar特征分类器的面部检测

目标 学习了解Haar 特征分类器为基础的面部检测技术将面部检测扩展到眼部检测等。 基础 以Haar 特征分类器为基础的对象检测技术是一种非常有效的对象检测技术(2001 年Paul_Viola 和Michael_Jones 提出)。它是基于机器学习的,通过使用大量的正负样本图像训练得到一个cascade_…

【大数据Hive】hive 行列转换使用详解

目录 一、前言 二、使用场景介绍 2.1 使用场景1 2.2 使用场景2 三、多行转多列 3.1 case when 函数 语法一 语法二 操作演示 3.2 多行转多列操作演示 四、多行转单列 4.1 concat函数 语法 4.2 concat_ws函数 语法 4.3 collect_list函数 语法 4.4 collect_set函…