cs231n assignment1——SVM

整体思路

  1. 加载CIFAR-10数据集并展示部分数据
  2. 数据图像归一化,减去均值(也可以再除以方差)
  3. svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数
  4. 利用随机梯度下降法优化SVM
  5. 在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率

加载展示划分数据集

加载CIFAR-10数据集

# Load the raw CIFAR-10 data.
#加载CIFAR-10数据集
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'# Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
#清理变量以防止多次加载数据
try:del X_train, y_traindel X_test, y_testprint('Clear previously loaded data.')
except:passX_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)# As a sanity check, we print out the size of the training and test data.
#打印出训练和测试数据的大小。
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
# Visualize some examples from the dataset.
#可视化部分数据
# We show a few examples of training images from each class.
#从每个类别中展示一些训练图片
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):idxs = np.flatnonzero(y_train == y)idxs = np.random.choice(idxs, samples_per_class, replace=False)for i, idx in enumerate(idxs):plt_idx = i * num_classes + y + 1plt.subplot(samples_per_class, num_classes, plt_idx)plt.imshow(X_train[idx].astype('uint8'))plt.axis('off')if i == 0:plt.title(cls)
plt.show()

划分数据集

# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
#将数据集划分为训练集49000张,测试集1000张和验证集1000张
#创建小样本数据加速训练
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500# Our validation set will be num_validation points from the original
# training set.
#验证集取自原始训练集
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]# Our training set will be the first num_train points from the original
# training set.
#训练集也取自原始训练集
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]# We will also make a development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)

数据集格式转换

# Preprocessing: reshape the image data into rows
#将图像数据转化为行
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))# As a sanity check, print out the shapes of the data
#输出数据集形状
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)

图像数据归一化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

# Preprocessing: subtract the mean image
#减去均值
# first: compute the image mean based on the training data
#计算训练数据的均值
mean_image = np.mean(X_train, axis=0)
print(mean_image[:10]) # 输出部分元素
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()# second: subtract the mean image from train and test data
#减去均值(更严谨的话可以继续除以方差)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
#数据维度转变简便计算优化权重矩阵W
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)

评估多类 SVM 损失函数的函数

在这里插入图片描述

​ (图来自《从零开始:机器学习的数学原理和算法实践》)
在这里插入图片描述

所以我们在linear_svm.py中完善svm_loss_naive

def svm_loss_naive(W, X, y, reg):"""Structured SVM loss function, naive implementation (with loops).Inputs have dimension D, there are C classes, and we operate on minibatchesof N examples.Inputs:- W: A numpy array of shape (D, C) containing weights.- X: A numpy array of shape (N, D) containing a minibatch of data.- y: A numpy array of shape (N,) containing training labels; y[i] = c meansthat X[i] has label c, where 0 <= c < C.- reg: (float) regularization strengthReturns a tuple of:- loss as single float- gradient with respect to weights W; an array of same shape as W"""#梯度矩阵初始化dW = np.zeros(W.shape)  # initialize the gradient as zero# compute the loss and the gradient#计算损失和梯度num_classes = W.shape[1]num_train = X.shape[0]loss = 0.0for i in range(num_train):#W*Xiscore = X[i].dot(W)correct_score = score[y[i]]for j in range(num_classes):#预测正确if j == y[i]:continue#W*Xi-Wyi*Xi+1margin = score[j] - correct_score + 1  # 拉格朗日if margin > 0:loss += margin# Right now the loss is a sum over all training examples, but we want it# to be an average instead so we divide by num_train.#平均损失loss /= num_train#加上正则化λ||W||²# Add regularization to the loss.loss += reg * np.sum(W * W)############################################################################## TODO:                                                                     ## Compute the gradient of the loss function and store it dW.                ## Rather that first computing the loss and then computing the derivative,   ## it may be simpler to compute the derivative at the same time that the     ## loss is being computed. As a result you may need to modify some of the    ## code above to compute the gradient.                                       ############################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****dW /= num_traindW += reg * W# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****return loss, dW

评估svm_loss_naive函数

# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time# generate a random SVM weight matrix of small numbers
# 随机初始化权重矩阵
W = np.random.randn(3073, 10) * 0.0001 
#计算梯度和损失
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))

在验证集计算梯度损失

数值估计损失函数的梯度,并将数值估计值与计算的梯度进行比较

# Once you've implemented the gradient, recompute it with the code below
# and gradient check it with the function we provided for you# Compute the loss and its gradient at W.
#计算损失和梯度
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)

用向量形式计算损失函数

在这里插入图片描述

所以我们在linear_svm.py中完善svm_loss_vectorized

def svm_loss_vectorized(W, X, y, reg):"""Structured SVM loss function, vectorized implementation.Inputs and outputs are the same as svm_loss_naive."""loss = 0.0dW = np.zeros(W.shape)  # initialize the gradient as zero############################################################################## TODO:                                                                     ## Implement a vectorized version of the structured SVM loss, storing the    ## result in loss.                                                           ############################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****num_train=X.shape[0]classes_num=X.shape[1]score = X.dot(W)#矩阵大小变化,大小不同的矩阵不可以加减correct_scores = score[range(num_train), list(y)].reshape(-1, 1) #[N, 1]margin = np.maximum(0, score - correct_scores + 1)margin[range(num_train), list(y)] = 0#正则化loss = np.sum(margin) / num_trainloss += 0.5 * reg * np.sum(W * W)# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****############################################################################## TODO:                                                                     ## Implement a vectorized version of the gradient for the structured SVM     ## loss, storing the result in dW.                                           ##                                                                           ## Hint: Instead of computing the gradient from scratch, it may be easier    ## to reuse some of the intermediate values that you used to compute the     ## loss.                                                                     ############################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****#大于0的置1,其余为0margin[margin>0] = 1margin[range(num_train),list(y)] = 0margin[range(num_train),y] -= np.sum(margin,1)dW=X.T.dot(margin)dW=dW/num_traindW=dW+reg*W# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****return loss, dW

然后我们对比两种损失函数计算的时间差异

# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
_, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss and gradient: computed in %fs' % (toc - tic))tic = time.time()
_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss and gradient: computed in %fs' % (toc - tic))# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('difference: %f' % difference)

使用SGD优化

在这里插入图片描述

from __future__ import print_functionfrom builtins import range
from builtins import object
import numpy as np
from ..classifiers.linear_svm import *
from ..classifiers.softmax import *
from past.builtins import xrangeclass LinearClassifier(object):def __init__(self):self.W = Nonedef train(self,X,y,learning_rate=1e-3,reg=1e-5,num_iters=100,batch_size=200,verbose=False,):"""Train this linear classifier using stochastic gradient descent.Inputs:- X: A numpy array of shape (N, D) containing training data; there are Ntraining samples each of dimension D.- y: A numpy array of shape (N,) containing training labels; y[i] = cmeans that X[i] has label 0 <= c < C for C classes.- learning_rate: (float) learning rate for optimization.- reg: (float) regularization strength.- num_iters: (integer) number of steps to take when optimizing- batch_size: (integer) number of training examples to use at each step.- verbose: (boolean) If true, print progress during optimization.Outputs:A list containing the value of the loss function at each training iteration."""num_train, dim = X.shapenum_classes = (np.max(y) + 1)  # assume y takes values 0...K-1 where K is number of classesif self.W is None:# lazily initialize Wself.W = 0.001 * np.random.randn(dim, num_classes)# Run stochastic gradient descent to optimize Wloss_history = []for it in range(num_iters):X_batch = Noney_batch = None########################################################################## TODO:                                                                 ## Sample batch_size elements from the training data and their           ## corresponding labels to use in this round of gradient descent.        ## Store the data in X_batch and their corresponding labels in           ## y_batch; after sampling X_batch should have shape (batch_size, dim)   ## and y_batch should have shape (batch_size,)                           ##                                                                       ## Hint: Use np.random.choice to generate indices. Sampling with         ## replacement is faster than sampling without replacement.              ########################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****hint=np.random.choice(num_train,batch_size,replace=True)X_batch = X[hint]y_batch = y[hint]# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****# evaluate loss and gradientloss, grad = self.loss(X_batch, y_batch, reg)loss_history.append(loss)# perform parameter update########################################################################## TODO:                                                                 ## Update the weights using the gradient and the learning rate.          ########################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****self.W = self.W - learning_rate * grad# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****if verbose and it % 100 == 0:print("iteration %d / %d: loss %f" % (it, num_iters, loss))return loss_historydef predict(self, X):"""Use the trained weights of this linear classifier to predict labels fordata points.Inputs:- X: A numpy array of shape (N, D) containing training data; there are Ntraining samples each of dimension D.Returns:- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensionalarray of length N, and each element is an integer giving the predictedclass."""y_pred = np.zeros(X.shape[0])############################################################################ TODO:                                                                   ## Implement this method. Store the predicted labels in y_pred.            ############################################################################# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****scores = X.dot(self.W)y_pred = y_pred+np.argmax(scores,1)# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****return y_preddef loss(self, X_batch, y_batch, reg):"""Compute the loss function and its derivative.Subclasses will override this.Inputs:- X_batch: A numpy array of shape (N, D) containing a minibatch of Ndata points; each point has dimension D.- y_batch: A numpy array of shape (N,) containing labels for the minibatch.- reg: (float) regularization strength.Returns: A tuple containing:- loss as a single float- gradient with respect to self.W; an array of the same shape as W"""passclass LinearSVM(LinearClassifier):""" A subclass that uses the Multiclass SVM loss function """def loss(self, X_batch, y_batch, reg):return svm_loss_vectorized(self.W, X_batch, y_batch, reg)class Softmax(LinearClassifier):""" A subclass that uses the Softmax + Cross-entropy loss function """def loss(self, X_batch, y_batch, reg):return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)

利用SGD迭代减少损失

from cs231n.classifiers import LinearSVM
#加载SVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))

在训练集和验证集计算准确率

#在训练集和验证集进行预测结果,计算准确率
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))

计算预测数据准确率

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.39 (> 0.385) on the validation set.# Note: you may see runtime/overflow warnings during hyper-parameter search.
# This may be caused by extreme values, and is not a bug.# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.################################################################################
# TODO:                                                                        #
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the      #
# training set, compute its accuracy on the training and validation sets, and  #
# store these numbers in the results dictionary. In addition, store the best   #
# validation accuracy in best_val and the LinearSVM object that achieves this  #
# accuracy in best_svm.                                                        #
#                                                                              #
# Hint: You should use a small value for num_iters as you develop your         #
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation   #
# code with a larger value for num_iters.                                      #
################################################################################# Provided as a reference. You may or may not want to change these hyperparameters
#学习率
learning_rates = [1e-7, 5e-5]
#reg
regularization_strengths = [2.5e4, 5e4]# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****for learning_rate in learning_rates:for regularization_strength in regularization_strengths:svm = LinearSVM()#svm训练loss_hist = svm.train(X_train, y_train, learning_rate=learning_rate, reg=regularization_strength, num_iters=1500, verbose=True)#在训练集预测,计算平均准确率y_train_pred2 = svm.predict(X_train)training_accuracy = np.mean(y_train == svm.predict(X_train))print('training accuracy: %f' % (np.mean(y_train == y_train_pred2)))#在验证集预测,计算平均准确率y_val_pred2 = svm.predict(X_val)val_accuracy = np.mean(y_val== svm.predict(X_val))print('validation accuracy: %f' % (np.mean(y_val == y_val_pred2)))#在训练集和验证集计算的准确率保存在resultsresults[(learning_rate,regularization_strength)] = (training_accuracy,val_accuracy)print(results)#取最大的准确率保存在best_valif best_val < val_accuracy:best_val = val_accuracybest_svm = svm# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****# Print out results.
for lr, reg in sorted(results):train_accuracy, val_accuracy = results[(lr, reg)]print('lr %e reg %e train accuracy: %f val accuracy: %f' % (lr, reg, train_accuracy, val_accuracy))print('best validation accuracy achieved during cross-validation: %f' % best_val)

将最好的模型保存在best_svm中,在测试集计算准确率

# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)

主要解决问题:

  • 损失函数和梯度的推导

  • 为什么SGD越迭代可能产生loss变大的情况:

    因为SGD在每一步放弃了对梯度准确性的追求,每步仅仅随机采样少量样本来计算梯度,计算速度快,内存开销小,但是由于每步接受的信息量有限,对梯度的估计出现偏差也在所难免,造成目标函数曲线收敛轨迹显得很不稳定,伴有剧烈波动,甚至有时出现不收敛的情况。(这很正常!)

一个冷笑话(这能看出来是啥就有鬼了,果然用词很严谨

%f’ % (
lr, reg, train_accuracy, val_accuracy))

print(‘best validation accuracy achieved during cross-validation: %f’ % best_val)

将最好的模型保存在best_svm中,在测试集计算准确率```python
# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)

主要解决问题:

  • 损失函数和梯度的推导

  • 为什么SGD越迭代可能产生loss变大的情况:

    因为SGD在每一步放弃了对梯度准确性的追求,每步仅仅随机采样少量样本来计算梯度,计算速度快,内存开销小,但是由于每步接受的信息量有限,对梯度的估计出现偏差也在所难免,造成目标函数曲线收敛轨迹显得很不稳定,伴有剧烈波动,甚至有时出现不收敛的情况。(这很正常!)

一个冷笑话(这能看出来是啥就有鬼了,果然用词很严谨

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242334.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图解数据结构】顺序表实战指南:手把手教你详细实现(超详细解析)

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;图解数据结构、算法模板 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 一. ⛳️线性表1.1 &#x1f514;线性表的定义1.2 &#x1f514;线性表的存储结构 二. ⛳️顺序表…

web前端项目-金山打字游戏【附源码】

金山打字 【金山打字】这是一个练习打字的游戏&#xff0c;当游戏开始后&#xff0c;界面从顶部不断落下内容为随机字母的方块&#xff0c;当按下相对应的按键时&#xff0c;就会清除对应方块。游戏难度会随着落下的速度加快而提高。玩家每次成功清除字母方块&#xff0c;都会…

spawn_group | spawn_group_template | linked_respawn

字段介绍 spawn_group | spawn_group_template 用来记录与脚本事件或boss战斗有关的 creatures | gameobjects 的刷新数据linked_respawn 用来将 creatures | gameobjects 和 boss 联系起来&#xff0c;这样如果你杀死boss&#xff0c; creatures | gameobjects 在副本重置之前…

六、数组(1)一维数组

所谓数组&#xff0c;就是一个集合&#xff0c;里面存放了相同类型的数据元素 特点1&#xff1a;数组中每个数据元素都是相同的数据类型 特点2&#xff1a;数组是由连续的内存位置组成的 一、一维数组的定义方式 1、数据类型 数组名[数组长度]; 2、数据类型 数组名[数组长度…

【JavaEE】_基于UDP实现网络通信

目录 1. 服务器 1.1 实现逻辑 1.2 代码 1.3 部分代码解释 2. 客户端 2.1 实现逻辑 2.2 代码 2.3 客户端部分代码解释 3. 程序运行结果 4. 服务器客户端交互逻辑 此篇内容为实现UDP版本的回显服务器echo server&#xff1b; 普通服务器&#xff1a;收到请求&#xff…

《WebKit 技术内幕》之五(3): HTML解释器和DOM 模型

3 DOM的事件机制 基于 WebKit 的浏览器事件处理过程&#xff1a;首先检测事件发生处的元素有无监听者&#xff0c;如果网页的相关节点注册了事件的监听者则浏览器会将事件派发给 WebKit 内核来处理。另外浏览器可能也需要处理这样的事件&#xff08;浏览器对于有些事件必须响应…

【Linux】nc 网络诊断 | 文件传输 命令详解

目录 一、命令简介 二、命令使用 2.1 测试服务器 2.2 端口连通性测试 2.2.1tcp端口连通性测试 2.2.2udp端口连通性测试 2.3 文件及目录的传输 2.3.1 文件传输(TCP端口) 2.3.2 文件传输(UDP端口) 相关文章&#xff1a; 【网络】抓包工具Wireshark下载安装和基本使用教…

力扣343. 整数拆分(动态规划)

Problem: 343. 整数拆分 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该题目可以抽象成动态规划中的爬楼梯模型&#xff0c;将整数的拆分类比为上台阶&#xff1a; 1.每个阶段可以从整数中划分出1、2、…k的一个整数 2.int dp[n 1] dp[i]表示为i的整数划分的最大…

怎么提升搜狗网站排名

在当今数字化时代&#xff0c;网站排名对于品牌、企业以及个人都至关重要。而对于许多网站来说&#xff0c;搜狗搜索引擎是一个重要的流量来源。为了在搜狗上取得更好的排名&#xff0c;不仅需要优化网站内容&#xff0c;还需要巧妙运用一些工具和技巧。在本文中&#xff0c;我…

Labview局部变量、全局变量、引用、属性节点、调用节点用法理解及精讲

写本章前想起题主初学Labview时面对一个位移台程序&#xff0c;傻傻搞不清局部变量和属性节点值有什么区别&#xff0c;概念很模糊。所以更新这篇文章让大家更具象和深刻的去理解这几个概念&#xff0c;看完记得点赞加关注喔~ 本文程序源代码附在后面&#xff0c;大家可以自行下…

C语言第四弹---printf和scanf详解

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 printf和scanf详解 1、printf和scanf详解介绍1.1 printf1.1.1 基本用法1.1.2 占位符1.1.3 占位符列举1.1.4 输出格式1.1.4.1 限定宽度1.1.4.2 总是显示正负号1.1…

Docker安装开源Blog(Typecho)

前言 首先这个镜像是centos7.9进行安装PHP环境&#xff0c;然后挂载目录去运行的&#xff0c;镜像大概300MB左右&#xff0c;没学过PHP&#xff0c;没办法给Dockerfile文件 参考文章&#xff1a;Docker安装Typecho | D-y Blog感知不强&#xff0c;图一乐https://www.wlul.top…

Vagrant创建Oracle RAC环境示例

利用Vagrant安装Oracle RAC&#xff08;默认为non-CDB模式&#xff09;&#xff0c;生成2台虚机&#xff0c;耗时约1小时。 node1: -----------------------------------------------------------------node1: INFO: 2024-01-11 18:25:54: Make create database commandnode1: …

SpringBoot 更新业务场景下,如何区分null是清空属性值 还是null为vo属性默认值?

先看歧义现象 值为null 未传递此属性 所以此时如何区分null 时传递进来的的null&#xff0c;还是属性的默认值null? 引入方案 引入过滤器&#xff0c;中间截获requestBodyData并保存到HttpServletRequest&#xff0c;业务层从HttpServletRequest 获取到requestBodyData辅…

C语言算法赛——蓝桥杯(省赛试题)

一、十四届C/C程序设计C组试题 十四届程序C组试题A#include <stdio.h> int main() {long long sum 0;int n 20230408;int i 0;// 累加从1到n的所有整数for (i 1; i < n; i){sum i;}// 输出结果printf("%lld\n", sum);return 0; }//十四届程序C组试题B…

Cortex-M3/M4内核中断及HAL库函数详解(1):中断相关寄存器

0 工具准备 Keil uVision5 Cortex M3权威指南&#xff08;中文&#xff09; Cortex M3与M4权威指南 stm32f407的HAL库工程 STM32F4xx中文参考手册 1 NVIC相关寄存器介绍 在Cortex-M3/M4内核上搭载了一个异常响应系统&#xff0c;支持为数众多的系统异常和外部中断。其中&#…

关于C语言整型提升的讲解

目录 1.什么是整型提升 2.整型提升的意义 3.整型提升是怎么提升的 4.整型提升的实例 1.什么是整型提升 C语言中的整型算术运算总是以缺省&#xff08;默认&#xff09;整型类型的精度来进行的。为了获得这个精度&#xff0c;表达式中的字符和短整型操作数在使用之前会被转换…

3d渲染软件有哪些?3d云渲染推荐

目前市面上的3D渲染软件非常多&#xff0c;不同的建模软件都有自己的渲染方式&#xff0c;根据所处行业的不同和项目需要&#xff0c;设计师可以选择不同的软件帮助展示最终效果。 主流的渲染软件有&#xff1a;VRay和Corona&#xff1a;一般用于室内效果图渲染&#xff0c;与3…

Git学习笔记(第5章):Git团队协作机制

目录 5.1 团队内协作 5.2 跨团队协作 Git进行版本控制都是在本地库操作的。若想使用Git进行团队协作&#xff0c;就必须借助代码托管中心。 5.1 团队内协作 问题引入&#xff1a;成员1&#xff08;大佬&#xff09;利用Git在宿主机上初始化本地库&#xff0c;完成代码的整体…

MFC 序列化机制

目录 文件操作相关类 序列化机制相关类 序列化机制使用 序列化机制执行过程 序列化类对象 文件操作相关类 CFile&#xff1a;文件操作类&#xff0c;封装了关于文件读写等操作&#xff0c;常见的方法&#xff1a; CFile::Open&#xff1a;打开或者创建文件CFile::Write/…