(二分查找) 11. 旋转数组的最小数字 ——【Leetcode每日一题】

❓剑指 Offer 11. 旋转数组的最小数字

难度:简单

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。

给你一个可能存在 重复 元素值的数组 numbers ,它原来是一个升序排列的数组,并按上述情形进行了一次旋转。请返回旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一次旋转,该数组的最小值为 1。

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]

示例 1:

输入:numbers = [3,4,5,1,2]
输出:1

示例 2:

输入:numbers = [2,2,2,0,1]
输出:0

提示

  • n == numbers.length
  • 1 <= n <= 5000
  • -5000 <= numbers[i] <= 5000
  • numbers 原来是一个升序排序的数组,并进行了 1n 次旋转

注意:本题与 154. 寻找旋转排序数组中的最小值 II 相同。

💡思路:二分查找

将旋转数组对半分可以得到一个包含最小元素的新旋转数组,以及一个非递减排序的数组。新的旋转数组的长度是原数组的一半,从而将问题规模减少了一半,这种折半性质的算法的时间复杂度为 O ( l o g 2 N ) O(log2N) O(log2N)
在这里插入图片描述
此时问题的关键在于确定对半分得到的两个数组哪一个是旋转数组,哪一个是非递减数组。我们很容易知道非递减数组的第一个元素一定小于等于最后一个元素。

通过修改二分查找算法进行求解(leftmidright 分别代表包含最小元素的新旋转数组 ):

  1. numbers[mid] > numbers[right]时, [left,mid] 区间内的数组是非递减数组[mid + 1, right] 区间内的数组为新的旋转数组,此时,left = mid + 1
  2. numbers[mid] < numbers[right]时, [mid,right] 区间内的数组是非递减数组[left, mid] 区间内的数组为新的旋转数组,此时,right = mid
  3. numbers[mid] = numbers[right]时, 无法判断哪一个是旋转数组,哪一个是非递减数组,此时 right- -,直到能判断。

🍁代码:(C++、Java)

C++

class Solution {
public:int minArray(vector<int>& numbers) {int left = 0;int right = numbers.size() - 1;if(right == 0) return numbers[0];while(left < right){int mid = left + (right - left) / 2;if(numbers[mid] > numbers[right]){left = mid + 1;}else if(numbers[mid] < numbers[right]){right = mid;}else{right--;}}return numbers[left];}
};

Java

class Solution {public int minArray(int[] numbers) {int left = 0;int right = numbers.length - 1;if(right == 0) return numbers[0];while(left < right){int mid = left + (right - left) / 2;if(numbers[mid] > numbers[right]){left = mid + 1;}else if(numbers[mid] < numbers[right]){right = mid;}else{right--;}}return numbers[left];}
}

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( l o g n ) O(logn) O(logn),平均时间复杂度为 O ( l o g ⁡ n ) O(log⁡n) O(logn),其中 n 是数组 numbers 的长度。如果数组是随机生成的,那么数组中包含相同元素的概率很低,在二分查找的过程中,大部分情况都会忽略一半的区间。而在最坏情况下,如果数组中的元素完全相同,那么 while 循环就需要执行 n 次,每次忽略区间的右端点,时间复杂度为 O(n)
  • 空间复杂度 O ( 1 ) O(1) O(1)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90186.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式唯一ID实战

目录 一、UUID二、数据库方式1、数据库生成之简单方式2、数据库生成 - 多台机器和设置步长&#xff0c;解决性能问题3、Leaf-segment 方案实现4、双 buffer 优化5、Leaf高可用容灾 三、基于Redis实现分布式ID四、雪花算法 一、UUID UUID的标准形式包含32个16进制数字&#xff…

UE5 实现残影效果

文章目录 前言实现效果示例1示例2示例3示例4实现扩展前言 本文采用虚幻5.2.1版本,对角色生成残影效果进行讲解,以一种简单的、通俗易懂的、高性能的方式来实现此效果。此效果可以在角色使用某一技能时触发,比如使用攻击招式、闪现等等。 实现效果 示例1 在昏暗的环境示例…

用 oneAPI 实现 AI 欺诈检测:一款智能图像识别工具

简介 虚假图像和视频日益成为社交媒体、新闻报道以及在线内容中的一大隐患。在这个信息爆炸的时代&#xff0c;如何准确地识别和应对这些虚假内容已经成为一个迫切的问题。为了帮助用户更好地辨别虚假内容&#xff0c;我开发了一款基于 oneAPI、TensorFlow 和 Neural Compress…

百日筑基篇——python爬虫学习(一)

百日筑基篇——python爬虫学习&#xff08;一&#xff09; 文章目录 前言一、python爬虫介绍二、URL管理器三、所需基础模块的介绍1. requests2. BeautifulSoup1. HTML介绍2. 网页解析器 四、实操1. 代码展示2. 代码解释1. 将大文件划分为小的文件&#xff08;根据AA的ID数量划…

【无监督】2、MAE | 自监督模型提取的图像特征也很能打!(CVPR2022 Oral)

文章目录 一、背景二、方法三、效果 论文&#xff1a;Masked Autoencoders Are Scalable Vision Learners 代码&#xff1a;https://github.com/facebookresearch/mae 出处&#xff1a;CVPR2022 Oral | 何凯明 | FAIR 一、背景 本文的标题突出了两个词&#xff1a; masked…

【佳佳怪文献分享】安全人机交互的学习责任分配与自动驾驶应用

标题&#xff1a;Learning Responsibility Allocations for Safe Human-Robot Interaction with Applications to Autonomous Driving 作者&#xff1a;Ryan K. Cosner, Yuxiao Chen, Karen Leung, and Marco Pavone 来源&#xff1a;2023 IEEE International Conference on …

设备管理系统能起到什么作用?

在现代工业运营中&#xff0c;设备的高效管理和维护对于保障生产稳定运行和提升企业竞争力至关重要。而设备管理系统作为一种关键工具&#xff0c;能够极大地提高企业的生产效率和设备维护的准确性。本文将深入探讨设备管理系统的作用&#xff0c;以PreMaint设备数字化平台为例…

sealos安装k8s

一、前言 1、我前面文章有写过使用 kubeadm 安装的方式&#xff0c;大家可以去参考 &#xff08;二&#xff09;k8s集群安装&#xff0c;有一系列的k8s文章说明 2、安装k8s的方式有很多 kubeadmsealoskubespray等等 3、关于sealos来安装 k8s &#xff0c;也是非常建议大家去…

基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

P450进阶款无人机室内定位功能研测

在以往的Prometheus 450&#xff08;P450&#xff09;无人机上&#xff0c;我们搭载的是Intel Realsense T265定位模块&#xff0c;使用USB连接方式挂载到机载计算机allspark上&#xff0c;通过机载上SDK驱动T265运行并输出SLAM信息&#xff0c;以此来实现室内定位功能。 为进…

SpringBoot复习:(45)@Component定义的bean会被@Bean定义的同名的bean覆盖

有同名的bean需要配置&#xff1a; spring.main.allow-bean-definition-overridingtrue 否则报错。 package cn.edu.tju.component;import org.springframework.stereotype.Component;Component public class Person {private String name;private int age;{this.name "…

C++ QT(一)

目录 初识QtQt 是什么Qt 能做什么Qt/C与QML 如何选择Qt 版本Windows 下安装QtLinux 下安装Qt安装Qt配置Qt Creator 输入中文配置Ubuntu 中文环境配置中文输入法 Qt Creator 简单使用Qt Creator 界面组成Qt Creator 设置 第一个Qt 程序新建一个项目项目文件介绍项目文件*.pro样式…

C++多态

文章目录 &#x1f435;1. 什么是多态&#x1f436;2. 构成多态的条件&#x1f429;2.1 虚函数&#x1f429;2.2 虚函数的重写&#x1f429;2.3 final 和 override关键字&#x1f429;2.4 重载、重写、重定义对比 &#x1f431;3. 虚函数表&#x1f42f;4. 多态的原理&#x1f…

深入探究QCheckBox的三种状态及其用法

文章目录 引言&#xff1a;三种状态一、未选中状态&#xff08;0&#xff09;&#xff1a;二、选中状态&#xff08;2&#xff09;&#xff1a;三、部分选中状态&#xff08;1&#xff09;&#xff1a; 判断方法结论&#xff1a; 引言&#xff1a; QCheckBox是Qt框架中常用的复…

分支语句与循环语句(2)

3.3 do...while()循环 3.3.1 do语句的语法&#xff1a; do 循环语句; while(表达式); 3.3.2执行流程图&#xff1a; 3.3.3 do语句的特点 循环至少执行一次&#xff0c;使用的场景有限&#xff0c;所以不是经常使用。 打印1-10的整数&#xff1a; #define _CRT_SECURE_NO_WA…

网页显示摄像头数据的方法---基于web video server

1. 背景&#xff1a; 在ros系统中有发布摄像头的相关驱动rgb数据&#xff0c;需求端需要将rgb数据可以直接在网页上去显示。 问题解决&#xff1a; web_video_server功能包&#xff0c;相关链接&#xff1a; web_video_server - ROS Wiki 2. 下载&#xff0c;安装和编译&a…

ios swift5 collectionView 瀑布流(两列)

文章目录 1.瀑布流1.1 demo地址1.2 记得把部署的最低版本由8改成11,13甚至更高。不然编译会报错 2.动态计算图片和文字的高度 1.瀑布流 1.1 demo地址 CollectionViewWaterfallLayout - github 1.2 记得把部署的最低版本由8改成11,13甚至更高。不然编译会报错 2.动态计算图片和…

【Android Framework系列】第10章 PMS之Hook实现广播的调用

1 前言 前面章节我们学习了【Android Framework系列】第4章 PMS原理我们了解了PMS原理&#xff0c;【Android Framework系列】第9章 AMS之Hook实现登录页跳转我们知道AMS可以Hook拦截下来实现未注册Activity页面的跳转&#xff0c;本章节我们来尝试一下HookPMS实现广播的发送。…

Stable Diffusion + Deform制作指南

1.安装sd以及deform插件,更新后记得重启 需要安装ffmpeg https://ffmpeg.org/download.html 选择对应版本然后安装 如果是windows需要解压后将ffmpeg的bin目录配置在电脑的环境变量里面。 2.准备一张初始开始图片 3.填写参数,这里面参数要注意,宽高一定是32的倍数。如果填写…