《WebKit 技术内幕》学习之八(1):硬件加速机制

《WebKit 技术内幕》之八(1):硬件加速机制

1 硬件加速基础

1.1 概念

        这里说的硬件加速技术是指使用GPU的硬件能力来帮助渲染网页,因为GPU的作用主要是用来绘制3D图形并且性能特别好,这是它的专长所在,它同软件渲染有很多不同的地方,既有自己的优点,当然也有些不足之处。

        对于GPU绘图而言,通常不像软件渲染那样只是计算其中更新的区域,一旦有更新请求,如果没有分层,引擎可能需要重新绘制所有的区域,因为计算更新部分对GPU来说可能耗费更多的时间。当网页分层之后,部分区域的更新可能只在网页的一层或者几层,而不需要将整个网页都重新绘制。通过重新绘制网页的一个或者几个层,并将它们和其他之前绘制完的层合成起来,既能使用GPU的能力,又能够减少重绘的开销。

        之前,笔者总是将RenderLayer对象和最终显示出来的图形层次一一对应起来,也就是每个RenderLayer对象都有一个后端存储与其对应,这样有很多好处,那就是当每一层更新的时候,WebKit只需要更新RenderLayer对象包含的节点即可。所以当某一层有任何更新时候,WebKit重绘该层的所有内容(当然对于Tiledlayer不是这样的情况)。这是理想情况,在现实中不一定会这样,主要原因是实际中的硬件能力和资源有限。为了节省GPU的内存资源,硬件加速机制在RenderLayer树建立之后需要做三件事情来完成网页的渲染。

  • WebKit决定将哪些RenderLayer对象组合在一起,形成一个有后端存储的新层,这一新层不久后会用于之后的合成(Compositing),这里称之为合成层(Compositing Layer)。每个新层都有一个或者多个后端存储,这里的后端存储可能是GPU的内存。对于一个RenderLayer对象,如果它没有后端存储的新层,那么就使用它的父亲所使用的合成层。
  • 将每个合成层包含的这些RenderLayer内容绘制在合成层的后端存储中,如第7章所述,这里的绘制可以是软件绘制也可以是硬件绘制。
  • 由合成器(Compositor)将多个合成层合成起来,形成网页的最终可视化结果,实际就是一张图片。合成器是一种能够将多个合成层按照这些层的前后顺序、合成层的3D变形等设置而合成一个图像结果的设施,后面会介绍Chromium合成器的工作原理。

        在WebKit中,只有把编译的C代码宏(macro)“ACCELERATED_COMPOSITING”打开之后,硬件加速机制才会被开启,有关硬件加速的基础设施才会被编译进去。

1.2 WebKit硬件加速设施

        一个RenderLayer对象如果需要后端存储,它会创建一个RenderLayerBacking对象,该对象负责Renderlayer对象所需要的各种存储。正如前面所述,理想情况下,每个RenderLayer都可以创建自己的后端存储,但事实上不是所有RenderLayer都有自己的RenderLayerBacking对象。如果一个RenderLayer对象被WebKit依照一定的规则创建了后端存储,那么该RenderLayer被称为合成层。

        每个合成层都有一个RenderLayerBacking ,RenderLayerBacking负责管理RenderLayer所需要的所有后端存储,因为后端存储可能需要多个存储空间。在WebKit中,存储空间使用GraphicsLayer类来表示,下图描述了这些主要类和它们的关系。

                               图WebKit的硬件加速基础类

        上图的上半部分是WebKit项目中WebCore部分的四个基础类,RenderLayer和RenderLayerBacking已经做过一些介绍了,GraphicsLayer表示RenderLayer中前景层、背景层所需要的一个后端存储。每个GraphicsLayer都使用一个GraphicsLayerClient对象,该对象能够收到GraphicsLayer的一些状态更新信息,并且包含一个绘制该GraphicsLayer对象的方法,RenderLayerBacking继承于该类。GraphicsLayer是WebKit中的基础类,主要定义一套标准接口,在WebKit不同的移植中,它们有不同的子类及其实现,图8-1的下半部分是两个不同移植的具体实现类。

        哪些RenderLayer对象可以是合成层呢?如果一个RenderLayer对象具有以下的特征之一,那么它就是合成层。

  • RenderLayer具有CSS 3D属性或者CSS透视效果。
  • RenderLayer包含的RenderObject节点表示的是使用硬件加速的视频解码技术的HTML5“video”元素。
  • RenderLayer包含的RenderObject节点表示的是使用硬件加速的Canvas 2D元素或者WebGL技术。
  • RenderLayer使用了CSS透明效果的动画或者CSS变换的动画。
  • RenderLayer使用了硬件加速的CSS Filters技术。
  • RenderLayer使用了剪裁(Clip)或者反射(Reflection)属性,并且它的后代中包括一个合成层。
  • RenderLayer有一个Z坐标比自己小的兄弟节点,且该节点是一个合成层。

        至于为什么这么做,有以下三个原因:首先当然是合并一些RenderLayer层,这样可以减少内存的使用量;其二是在合并之后,尽量减少合并带来的重绘性能和处理上的困难;其三对于那些使用单独层能够显著提升性能的RenderLayer对象,可以继续使用这些好处,例如使用WebGL技术的canvas元素。

        下图描述了RenderLayer树、RenderLayerBacking对象和GraphicsLayer树这些硬件加速基础设施的对应关系。RenderLayer树中的第四个节点没有创建RenderLayerBacking对象,因为不符合上面的创建条件,而对于每个RenderLayerBacking对象,它也至少需要一个GraphicsLayer对象,当然也可能需要多个,图中的RenderLayerBacking对象分别需要2个、1个和4个GraphicsLayer对象,这些对象分别表示什么呢?图8-3描述了一个RenderLayerBacking对象可能包括的众多GraphicsLayer对象层,它们表示不同的含义。

                          图RenderLayer树、RenderLayerBacking对象和GraphicsLayer树

                                图RenderLayerBacking包含的各种GraphicsLayer对象层

        为什么一个RenderLayerBacking对象需要这么多层呢?原因有很多,例如WebKit需要将滚动条独立开来称为一个层,需要两个容器层来表示RenderLayer对应的Z坐标为正数的子女和Z坐标为负数的子女,需要滚动的内容建立新层,还可能需要剪裁层和反射层。那么这些层是如何被组织并且它们被绘制的顺序是如何呢?上图中的树状结构描述了所有层的绘制顺序,按照先根顺序遍历的结果即是绘制顺序,图中每个层就是一个GraphicsLayer对象。对于某个RenderLayerBacking对象来说,其主层是肯定存在的,其他层则不一定存在,因为不是每个RenderLayer对象都需要用到它们。

                                图RenderLayerBacking中包含的GraphicsLayer对象

管理这些合成层等工作的是RenderLayerCompositor类,这个类可以说是个“大管家”。它不仅计算和决定哪些RenderLayer对象是合成层,而且为合成层创建GraphicsLayer对象,如图8-5所示。每个RenderView对象包含一个RenderLayerCompositor,这些对象仅在硬件加速机制下才会被创建。RenderLayerCompositor类本身也类似于一个RenderLayerBacking类,也就是说它也包含一些GraphicsLayer对象,这些对象对应的是整个网页所需要的后端存储。

                                                图RenderLayerCompositor类

1.3 硬件渲染过程

介绍完硬件加速机制所使用的内部设施之后,同前面介绍的软件渲染机制一样,下面详细分析硬件渲染机制过程。渲染的一般过程,在本章最开始的时候已经描述过,这里主要介绍WebKit是如何具体实现这一过程的。

示例代码8-1给出了一个网页,该网页中使用了很多HTML5新功能,它必须使用硬件加速机制才能够渲染,因为这其中的CSS 3D变形、WebGL和Video等都是HTML5引入的新特性,这些新特性必须依赖GPU硬件加速才能达到比较好的效果。

示例代码8-1需要硬件加速机制的HTML5网页

    <html><style>div{-webkit-transform:rotateY(10deg);}</style><body><p>test text</p><div>css 3d transform</div><canvas id="webgl"width="80"height="80"></canvas><video width="400"height="300"controls="controls"><source src="test.ogg"type="video/ogg"></video><script type="text/javascript">var canvas=document.getElementById("webgl");var gl=canvas.getContext("experimental-webgl");gl.clearColor(0.0, 1.0, 0.0, 1.0);gl.clear(gl.COLOR_BUFFER_BIT);</script></body></html>

        首先看WebKit是如何确定并计算合成层的,图8-6描述了WebKit如何决定哪些层是合成层并为它们分配后端存储的过程。图中主要包含两个部分,都是RenderLayerCompositor类的函数,一是检查RenderLayer对象是否为合成层,如果是的话,为它们创建后端存储对象RenderLayerBacking;二是根据重新更新的合成层来更改合成层树,并修改后端存储对象的一个设置信息。

                                        图WebKit决定合成层并构建合成层树

        除了上图之外,当RenderLayer对象被创建时,网页还有一些其他情况也可能需要创建RenderLayerBacking对象。具体的过程是由RenderLayerModelObject::styleDidChanged()函数调用RenderLayer::styleChanged()函数来触发,然后WebKit调用RenderLayerCompositor::updateLayerCompositingState()函数为RenderLayerModelObject对象所在的RenderLayer层来创建后端存储对象。

        下图主要描述的是WebKit为示例代码8-1建立的合成层和合成层相应的RenderLayerBacking对象。根据前面的解释,WebKit为网页中的5个DOM节点创建RenderLayer对象,分别为HTMLDocument对象、HTMLHtmlElement对象、HTMLDivElement对象、HTMLCanvas对象和HTMLVideo对象。但是,图中只有4个RenderLayerBacking对象,这是因为HTMLHtmlElment对象对应的RenderLayer没有自己的RenderLayerBacking对象,原因是该RenderLayer对象不满足之前所描述的规则。

                            图示例代码的RenderLayer树和RenderLayerBacking对象

        其次,WebKit需要遍历和绘制每一个合成层,也就是每个合成层可能有一个或者多个RenderLayer对象,这可能包含至少四种情形,第一种情形是HTMLDocument节点,WebKit绘制该节点所在的合成层需要遍历两个RenderLayer对象所包含的子树,与其他绘制的内容的调用过程非常相似,该合成层也需要一个用于2D图形的图形上下文对象,该对象的内部实现由各个移植来决定,具体的2D绘图在后面介绍。该层的调用过程如图8-8所示,该过程同软件渲染非常类似,只是递归过程稍微不同。

                                图绘制HTMLDocument对应的RenderLayer层

        在软件渲染过程中,paintLayer函数被递归调用,也就是从RenderLayer根节点开始,直到所有的RenderLayer对象都被遍历为止。在硬件加速机制中,情况有所不同,这是因为引入了合成层的概念,每个RenderLayer对象被绘制到祖先链中最近的合成层。示例代码是WebKit中RenderLayer::paintLayer()函数的条件判断部分的代码,用来检查是否在父节点所在的后端存储中绘制当前节点。如果它不是合成层,那么就继续绘制该层;如果它是的话,那么就直接返回。在之后的逻辑中,WebKit会重新为每一个合成层调用绘制操作,每个合成层的图形上下文都不一样,这点不像软件渲染过程。

        示例代码WebKit的RenderLayer::paintLayer()函数的条件判断

    RenderLayer::paintLayer(){if (isComposited()){if (context->updatingControlTints()||(paintingInfo.paintBehavior&PaintBehaviorFlattenCompositingLayers)){paintFlags|=PaintLayerTemporaryClipRects;}else if (!backing()->paintsIntoWindow()&&!backing()->paintsIntoCompositedAncestor()&&!shouldDoSoftwarePaint(this, paintFlags&PaintLayerPaintingReflection)){//If this RenderLayer should paint into its backing, thatwill be done via RenderLayerBacking::paintIntoLayer().return;}}else if (viewportConstrainedNotCompositedReason()==NotCompositedForBoundsOutOfView){return;}}

        第二种情形是使用CSS 3D变形的合成层,这在本章8.3.3节中介绍。第三种情形是使用WebGL技术的Canvas元素所在的合成层,它的绘制是由JavaScript操作来完成的,并且使用了3D的图形上下文,后面会在8.3.1节中介绍。第四种情形是类似使用了硬件加速的视频元素所在的合成层,该层的内容其实是由视频解码器来绘制,而后通过定时器或者其他通知机制来告诉WebKit该层内容已经发生变化,需要重新合成,这在后面的章节中介绍。

        最后一个步骤是渲染引擎将所有绘制完的合成层合成起来,这个是由WebKit的移植来完成的,在本章的8.2.3小节中将做详细的介绍。

1.4 3D图形上下文

        WebKit中的3D图形上下文主要是提供一组抽象接口,这组接口能够提供类似OpenGLES(使用GPU硬件能力的3D图形应用编程接口)的功能,其主要目的当然也是使用OpenGL绘制3D图形的能力。这一层抽象能够将WebKit各个移植的不同部分隐藏起来,WebCore只是使用统一的抽象接口。在WebKit中,3D图形上下文的主要用途是WebGL,当然启用硬件加速的Canvas2D等HTML5技术也会使用3D图形技术,不过情况有些不同。

        下图给出了WebKit的GraphicsContext3D类,该类是一个抽象类,其包含的接口所处理的对象就是OpenGL中所提供的能力,例如针对纹理、着色器、纹理贴图、顶点等GL操作,不过这里是一个C++类的封装而已。

                                图WebKit的3D图形上下文相关类

        上图中的GraphicsContext3DPrivate就是一个跟WebKit的各个移植相关的类,虽然在各个移植中都是使用该名称,但是每个移植的定义非常不同,它主要是针对移植的不同来实现的。PlatformGraphicsContext3D类是WebCore用于创建Surface等对象的参数,所以其名字是一致的,但是每个移植的定义实际上不一样。

        GraphicsContext3D中的接口有三种类型,第一类是所有移植共享实现的接口,例如texImage2DResourceSafe;第二类是一些移植能够共享实现的接口,例如texImage2D,它们可以直接调用OpenGL或者OpenGL ES的应用编程接口;第三类则是跟每个移植具体相关,例如platformGraphicsContext3D。

        这些跟移植相关的类都是需要每个移植去实现的,否则这一机制不能工作,下面的部分就是Chromium移植如何实现这些部分并包含哪些不同之处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/243733.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab模型变量一般说明,标定和显示量,以及产生a2l文件,自动填充a2l地址,并使用标定工具ati进行标定(推荐重要)

注意我是用的是matlab2019b 1&#xff0c;输入标定量&#xff0c;使用constant&#xff0c;用cal函数包裹 2&#xff0c;输出显示量&#xff0c;在划线上标注&#xff0c;然后用display函数包裹&#xff0c; 第一步和第二步完成以后&#xff0c;生产标定量a2l 3&#xff0c;输入…

常规二分查找中遇到的问题

以前我们写二分查找的时候&#xff0c;是这么写的&#xff1a; public static int binarySearch2(int []a,int target){int i0,ja.length-1;while(i<j){int mid(ij)/2;if(a[mid]target){return mid;}else if(a[mid]<target){imid1;}else {jmid-1;}}return -1;} 这么写&…

conda环境下OSError: We couldn‘t connect to ‘https://huggingface.co‘问题解决

1 问题描述 (dreamtalk) [rootlocalhost dreamtalk]# python inference_for_demo_video.py --wav_path data/audio/acknowledgement_english.m4a --style_clip_path data/style_clip/3DMM/M030_front_neutral_level1_001.mat --pose_path data/pose/RichardShelby_front_neutr…

【分布式技术专题】「分布式技术架构」 探索Tomcat技术架构设计模式的奥秘(Server和Service组件原理分析)

探索Tomcat技术架构设计模式的奥秘 Tomcat系统架构分析Tomcat 整体结构Tomcat总体结构图以 Service 作为“婚姻”1) Service 接口方法列表 2) StandardService 的类结构图方法列表 3) StandardService. SetContainer4) StandardService. addConnector 以 Server 为“居”1) Ser…

性能优化-OpenCL 介绍

「发表于知乎专栏《移动端算法优化》」 本文首先对 GPU 进行了概述&#xff0c;然后着重地对移动端的 GPU 进行了分析&#xff0c;随后我们又详细地介绍了 OpenCL 的背景知识和 OpenCL 的四大编程模型。希望能帮助大家更好地进行移动端高性能代码的开发。 &#x1f3ac;个人简介…

OpenCV——Scharr边缘检测

目录 一、Scharr算法1、算法概述2、主要函数 二、C代码三、python代码四、结果展示1、灰度图2、X方向一阶边缘2、Y方向一阶边缘3、整幅图像的一阶边缘 五、相关链接 OpenCV——Scharr边缘检测由CSDN点云侠原创&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&…

MODNet 剪枝再思考: 优化计算量的实验历程分享

目录 1 写在前面 2 模型分析 3 遇到问题 4 探索实验一 4.1 第一部分 4.2 第二部分 Error 1 Error 2 4.3 实验结果 ①参数量与计算量 ②模型大小 ③推理时延 5 探索实验二 5.1 LR Branch 5.2 HR Branch 5.2.1 初步分析 5.2.2 第一部分 enc2x 5.2.3 第二部分 en…

【算法分析与设计】二叉树的层序遍历

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 题目 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xf…

2017年认证杯SPSSPRO杯数学建模B题(第二阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 B题 岁月的印记 原题再现&#xff1a; 对同一个人来说&#xff0c;如果没有过改变面容的疾病、面部外伤或外科手术等经历&#xff0c;年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两张不同年龄段的照片是不是同一个人…

3D应用开发工具HOOPS引领数字化工厂浪潮:制造业转型的关键角色!

随着科技的迅猛发展&#xff0c;制造业正经历着数字化转型的浪潮。在这一变革的前沿&#xff0c;Tech Soft 3D 的 HOOPS技术正扮演着关键的角色。 本文将深入研究HOOPS技术如何在数字化工作流程中发挥作用&#xff0c;以及它是如何引领制造业朝着更高效、智能的未来迈进的。 …

对读取的Excel文件数据进行拆分并发请求发送到后端服务器

首先&#xff0c;我们先回顾一下文件的读取操作&#xff1a; 本地读取Excel文件并进行数据压缩传递到服务器-CSDN博客 第一步&#xff1a;根据以上博客&#xff0c;我们将原先的handleFile方法&#xff0c;改为以下内容&#xff1a; const handleFile async(e) > {conso…

低代码技术杂谈

一、探讨低代码的定义 “Low-Code”是什么&#xff1f;身为技术人员听到这种技术名词&#xff0c;咱们第一反应就是翻看维基百科 或者其他相关技术论文&#xff0c;咱们想看维基百科的英文介绍&#xff1a; A low-code development platform (LCDP) provides a development env…

HCIA-HarmonyOS设备开发认证-HarmonyOS简介

目录 前言目标一、HarmonyOS简介1.1、初识HarmonyOS1.2、HarmonyOS典型应用场景 二、HarmonyOS架构与安全2.1、HarmonyOS架构2.1.1 内核层2.1.2 系统服务层2.1.3 框架层2.1.4 应用层 前言 本章主要介绍HarmonyOS分布式操作系统的概念、关键技术与能力以及HarmonyOS典型的应用场…

我们从海龟交易法上能够学到什么现货黄金投资技术?

海龟交易法是一种应用于股票和期货市场的交易方法&#xff0c;一度很流行。但后来随着市场参与者水平的变化&#xff0c;还有交易技术的革新&#xff0c;海龟交易法逐渐失效&#xff0c;简单地应用这个方法已经不能盈利了。尽管如此&#xff0c;我们还是可以从这个方法中学习到…

【Linux】vim配置

我们普通用户打开未配置的vim的时候&#xff0c;和Windows中的vs界面差别很大&#xff0c;使用不是很便捷 这里我们可以配置一下vim&#xff0c;便于我们的操作 我们可以在gitee中搜索vimforcpp VimForCpp: 快速将vim打造成c IDE (gitee.com) curl -sLf https://gitee.com/HGt…

vue2面试题:什么是双向数据绑定

vue2面试题&#xff1a;什么是双向数据绑定 回答思路&#xff1a;1.什么是双向绑定-->2.双向数据绑定的原理-->3.如何实现双向数据绑定1.什么是双向绑定2.双向数据绑定的原理3.如何实现双向数据绑定来一个构造函数&#xff1a;执行初始化&#xff0c;对data执行响应化处理…

【江科大】STM32:定时器中断

文章目录 TIM&#xff08;Timer&#xff09;定时器根据复杂度和应用场景分为了高级定时器、通用定时器、基本定时器三种类型基本定时器通用定数器 高级定时器 时钟&#xff08;时钟电路&#xff09;的作用是什么&#xff1a;设置定时器触发中断普通方法&#xff1a;预分频器时序…

年末怒赚一笔,程序员快码住!趁热接单

元旦已过&#xff0c;龙年将至。 有钱没钱&#xff0c;回家过年。 话说回来&#xff0c;年关将至&#xff0c;农历的2023即将落下帷幕。天气渐寒&#xff0c;你的钱包是否也让你心生寒意&#xff1f;年初立下的赚钱flag是否优雅地实现了? 如果flag都倒了&#xff0c;你先别…

Nginx 基础使用

目录结构 进入Nginx的主目录我们可以看到这些文件夹 client_body_temp conf fastcgi_temp html logs proxy_temp sbin scgi_temp uwsgi_temp其中这几个文件夹在刚安装后是没有的&#xff0c;主要用来存放运行过程中的临时文件 client_body_temp fastcgi_temp proxy_temp scg…

全文干货!信息化和数字化的本质区别是什么?

信息化和数字化都是行业的发展方向&#xff0c;但有一些区别。 简单来说就是&#xff0c;信息化侧重系统建设&#xff0c;用以管理生成的信息与数据&#xff0c;通常包括建立OA办公系统、业务系统、财务管理系统、客户关系管理系统和人力管理系统等。数字化侧重于将物理业务和…