【数学建模】插值与拟合

文章目录

  • 插值
    • 插值方法
    • 用Python解决插值问题
  • 拟合
    • 最小二乘拟合
    • 数据拟合的Python实现

适用情况
处理由试验、测量得到的大量数据或一些过于复杂而不便于计算的函数表达式时,构造一个简单函数作为要考察数据或复杂函数的近似
定义
给定一组数据,需要确定满足特定要求的曲线(或曲面)
插值:如果所求曲线通过所给定有限个数据点
拟合:要求所求曲线反映对象整体的变化态势,得到简单实用的近似函数

插值

在一系列数据点对中,一些数据点的函数值缺失,因而希望通过已有数据点得到函数的近似表达式从而近似出确实数据点的函数值

从性质优良、便于计算的函数类{P(x)}中选择一个使得 P ( x i ) = y i P(x_i) =y_i P(xi)=yi成立的P(x)作为f(x)的近似
x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn成为插值节点
{ P ( x ) } \{P(x)\} {P(x)}称为插值函数类
P ( x i ) = y i ( i = 0 , 1 , . . . , n ) P(x_i) =y_i(i=0, 1, ..., n) P(xi)=yi(i=0,1,...,n)称为插值条件
得到的 P ( x ) P(x) P(x)称为插值函数
f ( x ) f(x) f(x)称为被插值函数

一维插值方法:一维Lagrange插值、分段线性插值、分段二次插值、牛顿插值和样条插值
二维插值方法:二维样条插值

插值方法

Lagrange插值
P ( x ) = ∑ i = 0 n l i ( x ) y i P(x)=\sum^n_{i=0}l_i(x)y_i P(x)=i=0nli(x)yi
其中 l i ( x ) l_i(x) li(x)称为以 x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn为节点的Lagrange插值基函数
l i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j l_i(x) = \prod^n_{j=0, j\neq i} \frac{x-x_j}{x_i-x_j} li(x)=j=0,j=inxixjxxj

代码实现

def h(x,y,a):s = 0.0for i in range(len(y)):t = y[i]for j in range(len(y)):if i != j:t *= (a-x[j])(x[i]-x[j])s += treturn s

分段线性插值
用折线代替曲线 y = f ( x ) y = f(x) y=f(x),其中 P ( x ) P(x) P(x)
P ( x ) = x − x i x i + 1 − x i y i + 1 + x − x i + 1 x i − x i + 1 y i P(x) = \frac{x-x_i}{x_{i+1}-x_i}y_{i+1} + \frac{x-x_{i+1}}{x_i-x_{i+1}}y_i P(x)=xi+1xixxiyi+1+xixi+1xxi+1yi
其中 x ∈ [ x i , x i + 1 ] , i = 0 , 1 , . . . , n − 1 x \in [x_i, x_{i+1}], i=0,1,..., n-1 x[xi,xi+1],i=0,1,...,n1

分段二次插值
P ( x ) P(x) P(x)为一二次多项式,即适用分段抛物线代替 y = f ( x ) y=f(x) y=f(x)

牛顿插值
差分定义:函数 f ( x ) f(x) f(x),等距节点 x i = x 0 + i h ( i = 0 , 1 , . . . , n ) x_i=x_0+ih(i=0, 1, ..., n) xi=x0+ih(i=0,1,...,n),一阶前向差分 Δ f i = f i + 1 − f i \Delta f_i = f_{i+1}-f_i Δfi=fi+1fi, 高阶差分为差分的差分

  1. Δ 0 f ( x ) = f ( x ) \Delta^0 f(x) = f(x) Δ0f(x)=f(x)
  2. Δ m f ( x ) = Δ m − 1 f ( x + h ) − Δ m − 1 f ( x ) \Delta^m f(x) = \Delta^{m-1}f(x+h) - \Delta^{m-1}f(x) Δmf(x)=Δm1f(x+h)Δm1f(x)

递归函数计算差分

def diff_forward(f, k, h, x):if k<=0: return f(x)else: return diff_forward(f, k-1, h, x+h) - diff_forward(f, k-1, h, x)

差商定义:函数 f ( x ) f(x) f(x),相异节点 x 0 < x 1 < . . . < x n x_0 < x_1<... < x_n x0<x1<...<xn
函数 f ( x ) f(x) f(x)关于节点 x i x_i xi x j x_j xj的一阶差商 f [ x i , x j ] f[x_i, x_j] f[xi,xj]
f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j f[x_i, x_j] = \frac{f(x_i)-f(x_j)}{x_i-x_j} f[xi,xj]=xixjf(xi)f(xj)
f ( x ) f(x) f(x)关于点 x i x_i xi x j x_j xj x k x_k xk的二阶差商有
f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k f[x_i, x_j, x_k]= \frac{f[x_i, x_j]-f[x_j, x_k]}{x_i-x_k} f[xi,xj,xk]=xixkf[xi,xj]f[xj,xk]
f ( x ) f(x) f(x)关于 x 0 , x 1 , . . . , x k x_0, x_1, ..., x_k x0,x1,...,xk k k k阶差商为
f [ x 0 , x 1 , . . . , x k ] = f [ x 0 , x 1 , . . . , x k − 1 ] − f [ x 1 , x 2 , . . . , x k ] x 0 − x k f[x_0, x_1, ..., x_k] = \frac{f[x_0, x_1, ..., x_{k-1}]-f[x_1, x_2, ..., x_k]}{x_0-x_k} f[x0,x1,...,xk]=x0xkf[x0,x1,...,xk1]f[x1,x2,...,xk]

代码示例:计算 k + 1 k+1 k+1个点对数据的 k k k阶差商

def diff_quo(xi=[], fi=[]):if len(xi)>2 and len(fi)>2:return (diff_quo(xi[:len(xi)-1],fi[:len(fi)-1])-diff_quo(xi[1:len(xi)],fi[1:len(fi)])) / float(xi[0]-xi[-1])  return (fi[0]- fi[1])/float(xi[0]-xi[1])

Newton插值公式
一次Newton插值多项式: N 1 ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x 0 , x 1 ] N_1(x)=f(x_0)+(x-x_0)f[x_0, x_1] N1(x)=f(x0)+(xx0)f[x0,x1]
再根据各阶差商的定义,可以得到 N n ( x ) N_n(x) Nn(x) f ( x ) f(x) f(x) n n n次插值多项式

样条插值
适用于对插值函数的光滑性有较高要求的问题
样条函数:具有一定光滑性的分段多项式
给定 [ a , b ] [a,b] [a,b]的一个分划, Δ : a = x 0 < x 1 < . . . < x n = b \Delta: a=x_0 < x_1 < ... < x_n=b Δ:a=x0<x1<...<xn=b
S ( x ) S(x) S(x)在各个小区间 [ x i , x i + 1 ] ( i = 0 , 1 , . . . , n − 1 ) [x_i, x_{i+1}](i=0, 1, ..., n-1) [xi,xi+1](i=0,1,...,n1)上为 m m m次多项式,且有 m − 1 m-1 m1阶连续导数,称 S ( x ) S(x) S(x)为关于分划 Δ \Delta Δ m m m次样条函数,折线属于一次样条曲线

二维数据的双三次样条插值
考虑二维数据的插值时,需要考虑到插值区域是否规则,给定数据是有规律分布的还是散乱、随机分布的
当二维数据在规则区域上有规律分布时,可以考虑用双三次样条插值,即求解一个 S ( x ) S(x) S(x)满足对 x x x y y y都是三次的多项式
image.png

用Python解决插值问题

scipy.interpolatemodule有一维插值函数interp1d、二维插值函数interp2d和多维插值函数interpn

一维插值
interp1d(x, y, kind='linear')
说明:kind参数取值为字符串,指明插值方法,取值包括linear线性插值、zero0阶样条插值、slinear1阶样条插值、quadratic2阶样条插值、cubic3阶样条插值
image.png
代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d 
x=np.arange(0,25,2)
y=np.array([12, 9, 9, 10, 18, 24, 28, 27, 25, 20, 18, 15, 13])
xnew=np.linspace(0, 24, 500)  #插值点
f1=interp1d(x, y); 
y1=f1(xnew);
f2=interp1d(x, y,'cubic'); 
y2=f2(xnew)
plt.rc('font',size=16); 
plt.rc('font',family='SimHei')
plt.subplot(121)
plt.plot(xnew, y1)
plt.xlabel("(A)分段线性插值")
plt.subplot(122)
plt.plot(xnew, y2)
plt.xlabel("(B)三次样条插值")
plt.savefig("figure7_4.png", dpi=500)
plt.show()

image.png

二维网格节点插值
image.png
image.png

思路:原始数据为100x100网格节点的数据,为提高精度,适用双三次样条插值,得到该区域上10x10网格节点的数据。把 0 ≤ x ≤ 1400 ∧ 0 ≤ y ≤ 1200 0 \leq x \leq 1400 \land 0 \leq y \leq 1200 0x14000y1200 数据分为140x120个小矩形计算对应曲面面积,每个矩形分为两个三角形,再利用海伦公式求解
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.interpolate import interp2d
z=np.loadtxt("Pdata7_5.txt")  #加载高程数据
x=np.arange(0,1500,100)
y=np.arange(1200,-100,-100)
f=interp2d(x, y, z, 'cubic')
xn=np.linspace(0,1400,141)
yn=np.linspace(0,1200,121)
zn=f(xn, yn)
m=len(xn); n=len(yn); s=0; 
for i in np.arange(m-1):for j in np.arange(n-1):p1=np.array([xn[i],yn[j],zn[j,i]])p2=np.array([xn[i+1],yn[j],zn[j,i+1]])p3=np.array([xn[i+1],yn[j+1],zn[j+1,i+1]])p4=np.array([xn[i],yn[j+1],zn[j+1,i]])p12=norm(p1-p2); p23=norm(p3-p2); p13=norm(p3-p1);p14=norm(p4-p1); p34=norm(p4-p3);L1=(p12+p23+p13)/2;s1=np.sqrt(L1*(L1-p12)*(L1-p23)*(L1-p13));L2=(p13+p14+p34)/2; s2=np.sqrt(L2*(L2-p13)*(L2-p14)*(L2-p34));s=s+s1+s2;  
print("区域的面积为:", s)
plt.rc('font',size=16); plt.rc('text',usetex=True)
plt.subplot(121); contr=plt.contour(xn,yn,zn); plt.clabel(contr)
plt.xlabel('$x$'); plt.ylabel('$y$',rotation=90)
ax=plt.subplot(122,projection='3d'); 
X,Y=np.meshgrid(xn,yn)
ax.plot_surface(X, Y, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.savefig('figure7_5.png',dpi=500); plt.show()

二维乱点插值
image.png
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata
x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5])
y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5])
z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9])
xy=np.vstack([x,y]).T
xn=np.linspace(x.min(), x.max(), 100)
yn=np.linspace(y.min(), y.max(), 100)
xng, yng = np.meshgrid(xn,yn)  #构造网格节点
zn=griddata(xy, z, (xng, yng), method='nearest')  #最近邻点插值
plt.rc('font',size=16); plt.rc('text',usetex=True)
ax=plt.subplot(121,projection='3d'); 
ax.plot_surface(xng, yng, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.subplot(122); c=plt.contour(xn,yn,zn,8); plt.clabel(c)
plt.savefig('figure7_6.png',dpi=500); plt.show()

拟合

最小二乘拟合

解决什么问题?
已知一组二维数据,即平面上 n n n个点 ( x i , y i ) ( i = 1 , 2 , . . . , n ) (x_i, y_i)(i=1, 2, ..., n) (xi,yi)(i=1,2,...,n) x i x_i xi互不相同,求函数 f ( x ) f(x) f(x)使得 f ( x ) f(x) f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好
残差: δ i = f ( x i ) − y i , i = 1 , 2 , . . . , n \delta_i=f(x_i)-y_i, i=1,2,...,n δi=f(xi)yi,i=1,2,...,n
最小二乘法使用的判定准则为残差的平和和最小,即
a r g m i n J = ∑ i = 1 n ( f ( x i ) − y i ) 2 argmin \quad J=\sum^n_{i=1}(f(x_i)-y_i)^2 argminJ=i=1n(f(xi)yi)2
最终得到拟合函数 f ( x ) = f ( x , a 1 , a 2 , . . . , a n ) f(x) = f(x, a_1, a_2, ..., a_n) f(x)=f(x,a1,a2,...,an)
根据参数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an线性与否,最小二乘法分为线性最小二乘和非线性最小二乘

线性最小二乘法
给定线性无关的函数系 { ϕ k ( x ) ∣ k = 1 , 2 , . . . , m } \{\phi_k(x)|k=1,2,...,m\} {ϕk(x)k=1,2,...,m}
若有拟合函数 f ( x ) = ∑ k = 1 m a k ϕ k ( x ) f(x) = \sum^m_{k=1}a_k \phi_k(x) f(x)=k=1makϕk(x),例如 f ( x ) = a m x m − 1 + a m − 1 x m − 2 + . . . + a 2 x + a 1 f(x)=a_mx^{m-1}+a_{m-1}x^{m-2}+...+a_2x+a_1 f(x)=amxm1+am1xm2+...+a2x+a1 f ( x ) = ∑ k = 1 m a k c o s ( k x ) f(x) = \sum^m_{k=1}a_k cos(kx) f(x)=k=1makcos(kx)
f ( x ) = f ( x , a 1 , a 2 , . . . , a m ) f(x)=f(x,a_1, a_2, ..., a_m) f(x)=f(x,a1,a2,...,am)为关于参数 a 1 , a 2 , . . . , a m a_1,a_2,..., a_m a1,a2,...,am的线性函数
f ( x ) f(x) f(x)带入 J J J的计算,根据
∂ J ∂ a k = 0 , k = 1 , 2 , ⋯ , m \frac{\partial J}{\partial a_k}=0,\quad k=1,2,\cdots,m akJ=0,k=1,2,,m
即:
∑ i = 1 n [ ( f ( x i ) − y i ) φ k ( x i ) ] = 0 , k = 1 , 2 , ⋯ , m \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-y_{i}\right) \varphi_{k}\left(x_{i}\right)\right]=0, \quad k=1,2, \cdots, m i=1n[(f(xi)yi)φk(xi)]=0,k=1,2,,m
得到:
image.png
形成一个关于 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am的线性方程组,记号说明如下:
image.png
则正规方程组改写为
R T R A = R T Y R^TRA=R^TY RTRA=RTY
当矩阵 R R R列满秩时, R T R R^TR RTR可逆,此时正规方程组有唯一解,即
A = ( R T R ) − 1 R T Y A=(R^TR)^{-1}R^TY A=(RTR)1RTY
非线性最小二乘拟合
当拟合函数不能以 ϕ k ( x ) \phi_k(x) ϕk(x)线性组合的形式构成时,例如下列形式:
image.png
使用同样的“最小化偏差”方法求解参数

拟合函数的选择
先做出数据的散点图,从直观上判断应选用什么样的拟合函数
举个例子
若数据分布接近直线,使用线性函数 f ( x ) = a 1 x + a 2 f(x)=a_1x+a_2 f(x)=a1x+a2
若数据分布接近抛物线,使用二次多项式 f ( x ) = a 1 x 2 + a 2 x + a 3 f(x)=a_1x^2+a_2x+a_3 f(x)=a1x2+a2x+a3
若数据分布是开始上升块随后逐渐变缓,使用双曲线型函数或指数型函数,即
image.png
若数据分布是开始下降较快随后逐渐变缓,使用
image.png

数据拟合的Python实现

利用NumPy库中的多项式拟合函数polyfitscipy.optimize模块中的curve_fit函数

image.png

polyfit的用法
代码展示:

from numpy import polyfit, polyval, array, arange
from matplotlib.pyplot import plot,show,rc
x0=arange(0, 1.1, 0.1)
y0=array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
p=polyfit(x0, y0, 2) #拟合二次多项式
print("拟合二次多项式的从高次幂到低次幂系数分别为:",p)
yhat=polyval(p,[0.25, 0.35]); print("预测值分别为:", yhat)
rc('font',size=16)
plot(x0, y0, '*', x0, polyval(p, x0), '-'); show()

curve_fit的用法
调用格式
popt, pcov = curve_fit(func, xdata, ydata)
参数说明:func为拟合的函数,xdata是自变量的观测值,ydata是函数的观测值,返回值popt是拟合的参数,pcov是参数的协方差矩阵
代码展示:

import numpy as np
from scipy.optimize import curve_fit
y=lambda x, a, b, c: a*x**2+b*x+c
x0=np.arange(0, 1.1, 0.1)
y0=np.array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
popt, pcov=curve_fit(y, x0, y0)
print("拟合的参数值为:", popt)
print("预测值分别为:", y(np.array([0.25, 0.35]), *popt))

实例练习
image.png
代码:

import numpy as np
from scipy.optimize import curve_fit
x0=np.array([6, 2, 6, 7, 4, 2, 5, 9])
y0=np.array([4, 9, 5, 3, 8, 5, 8, 2])
z0=np.array([5, 2, 1, 9, 7, 4, 3, 3])
xy0=np.vstack((x0, y0))
def Pfun(t, a, b, c):return a*np.exp(b*t[0])+c*t[1]**2
popt, pcov=curve_fit(Pfun, xy0, z0)
print("a,b,c的拟合值为:", popt)

image.png
代码:

from mpl_toolkits import mplot3d
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
m=200; n=300
x=np.linspace(-6, 6, m); y=np.linspace(-8, 8, n);
x2, y2 = np.meshgrid(x, y)
x3=np.reshape(x2,(1,-1)); y3=np.reshape(y2, (1,-1))
xy=np.vstack((x3,y3))
def Pfun(t, m1, m2, s):return np.exp(-((t[0]-m1)**2+(t[1]-m2)**2)/(2*s**2))
z=Pfun(xy, 1, 2, 3); zr=z+0.2*np.random.normal(size=z.shape) #噪声数据
popt, pcov=curve_fit(Pfun, xy, zr)   #拟合参数
print("三个参数的拟合值分别为:",popt)
zn=Pfun(xy, *popt)  #计算拟合函数的值
zn2=np.reshape(zn, x2.shape)
plt.rc('font',size=16)
ax=plt.axes(projection='3d') #创建一个三维坐标轴对象
ax.plot_surface(x2, y2, zn2,cmap='gist_rainbow')
plt.savefig("figure7_10.png", dpi=500); plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/244911.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

伸向Markdown的黑手,知名博客平台曝出LFI漏洞

如果你至今依然在坚持写博客&#xff0c;在知乎或其他自媒体平台上发表文章&#xff0c;那你应该对Markdown很熟悉了。这是一种轻量级标记语言&#xff0c;借此可以用纯文本格式编写文档&#xff0c;并用简单的标记设置文档格式&#xff0c;随后即可轻松转换为具备精美排版的内…

安装宝塔面板后k8s所在节点pod无法正常工作解决方法,kubernetes k8s 与宝塔面板冲突解决方法

在实际项目过程中我们使用了k8s 在生产环境中运行管理服务。 但是对服务器的状态管理我们使用了宝塔面板进行 K8s 版本1.2.8 宝塔面板 版本 8.05 操作步骤是这样的。 1.完成1.2.8 k8s的节点安装&#xff0c;并正常运行服务。 过程略 2.安装宝塔面板 ​ yum install -y …

vue中图片不显示问题 - vue中静态资源加载

文章目录 vue中图片不显示问题静态资源URL 转换规则webpack 静态资源处理 图片不显示问题问题描述解决办法1&#xff1a;使用require引入require is not defined 解决办法2&#xff1a;使用import引入解决办法3&#xff1a;将图片放进公共文件夹static或public vue中图片不显示…

PHP中一些特征函数导致的漏洞总结

第一部分&#xff1a; 特征函数 接触到几个常用的函数&#xff1a; \\ \\\ md5 intval strpos in_array preg_match str_replacephp用这些函数实现过滤一些代码&#xff0c;漏洞可能有一些特性&#xff0c;利用这些特征代码进行对比&#xff1b;账号密码对比&#xff1b;强制检…

ChatGPT无法胜任的五种编程任务

我喜欢把ChatGPT看作是StackOverflow的智能版&#xff0c;它大有帮助&#xff0c;但短期内不会取代专业人士。作为一名前数据科学家&#xff0c;ChatGPT问世后&#xff0c;我花了大量时间来试用它。其编程能力确实给我留下了深刻的印象。它可以从零开始生成非常有用的代码&…

核桃的数量---蓝桥杯

思路&#xff1a; 题目所代表的意思就是a,b,c这三个必须是核桃数量的因子&#xff0c;即a,b,c三个的最小公倍数 #include <iostream> #include <algorithm> using namespace std; // int main() { int a,b,c;cin>>a>>b>>c;int da*b/__gcd(a,b…

大数据处理,Pandas与SQL高效读写大型数据集

大家好&#xff0c;使用Pandas和SQL高效地从数据库中读取、处理和写入大型数据集&#xff0c;以实现最佳性能和内存管理&#xff0c;这是十分重要的。 处理大型数据集往往是一项挑战&#xff0c;特别是在涉及到从数据库读取和写入数据时。将整个数据集加载到内存中的传统方法可…

antdesignvue中使用VNode写法

1、使用场景 如图&#xff1a;消息提示框中&#xff0c;将数据中的数据单独一行显示 2、代码 let errorList res.result; //后端返回的数据例&#xff1a; ["1. 数据格式不正确","2. 数据已存在"]if(errorList&&errorList.length!0){this.$notif…

k8s的图形化工具---rancher

声明式&#xff1a;yaml文件 陈述式&#xff1a;命令行 k8s的图形化工具---rancher racher是一个开源的企业级多集群的k8s关联平台。 rancher和k8s区别&#xff1a; 都是为了容器的调度和编排系统&#xff0c;但是rancher不仅能调度&#xff0c;还能管理k8s集群&#xff0…

mac电脑安卓文件传输工具:Android File Transfer直装版

Android File Transfer&#xff08;AFT&#xff09;是一款用于在Mac操作系统上与Android设备之间传输文件。它允许用户将照片、音乐、视频和其他文件从他们的Android手机或平板电脑传输到Mac电脑&#xff0c;以及将文件从Mac上传到Android设备。 下载地址&#xff1a;https://w…

Unity New Input System 及其系统结构和源码浅析【Unity学习笔记·第十二】

转载请注明出处&#xff1a;&#x1f517;https://blog.csdn.net/weixin_44013533/article/details/132534422 作者&#xff1a;CSDN|Ringleader| 主要参考&#xff1a; 官方文档&#xff1a;Unity官方Input System手册与API官方测试用例&#xff1a;Unity-Technologies/InputS…

【项目日记(四)】第一层: 线程缓存的具体实现

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:项目日记-高并发内存池⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你做项目   &#x1f51d;&#x1f51d; 开发环境: Visual Studio 2022 项目日…

CC工具箱使用指南:【Excel导出图片】

一、简介 这是一个有点娱乐向的小工具。作用就是将Excel的内容导出成一个JPG图片&#xff0c;目前只针对Excel中的第一个sheet表。 说不出来实际作用在哪里&#xff0c;不过把一个长表快速导出图片&#xff0c;有时候也挺有意思&#xff0c;有兴趣可以试试。 二、工具参数介绍…

MySQL-进阶-索引

一、索引概述 1、介绍 2、有误索引搜索效率演示 3、优缺点 二、索引结构 1、B-Tree&#xff08;多路平衡查找树&#xff09; 2、BTree 3、Hash 三、索引分类 四、索引语法 1、语法 2、案例 五、SQL性能分析 1、查看执行频次 2、慢查询日志 3、show-profile 4、explain

【目标跟踪】多相机环视跟踪

文章目录 一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果 四、c 代码五、总结 一、前言 多相机目标跟踪主要是为了实现 360 度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域&#xff0c;要想靠相机实现无…

新能源、新智造、新技术、新未来2024上海国际氢能产业展览会7月魔都开展!

氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源&#xff0c;是实现可再生能源大规模消纳&#xff0c;电网大规模调峰和跨季节、跨地域储能的重要途径&#xff0c;对构建我国新型电力系统和实现碳达峰碳中和目标具有重要意义。 为落实国家关于发展氢能产业的决策部署&…

Springboot+vue的科研工作量管理系统的设计与实现(有报告),Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的科研工作量管理系统的设计与实现&#xff08;有报告&#xff09;&#xff0c;Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的科研工作量管理系统的设计与实现…

首批!鸿蒙千帆起,生态全面启动

在近日举办的鸿蒙生态千帆启航仪式上&#xff0c;华为常务董事、终端BG CEO余承东表示&#xff0c;鸿蒙生态设备已经增至8亿 &#xff0c;将打开万亿产业新蓝海。 在本次论坛上&#xff0c;华为宣布HarmonyOS NEXT鸿蒙星河版&#xff08;开发者预览版&#xff09;已面向开发者…

初识计算机网络 | 计算机网络的发展 | 协议初识

1.计算机网络的发展 “矛盾是普遍存在的&#xff0c;矛盾是事物联系的实质内容和事物发展的根本动力&#xff01;” 计算机在诞生之初&#xff0c;在军事上用来计算导弹的弹道轨迹&#xff01;在发展的过程中&#xff08;商业的推动&#xff0c;国家政策推动&#xff09;&…

NTFS 磁盘管理 :NTFS Disk by Omi NTFS

NTFS Disk by Omi NTFS是一款专为Mac系统设计的NTFS文件系统读写解决方案的工具。它可以帮助Mac用户方便地访问和管理NTFS格式的硬盘、U盘、移动硬盘以及其他存储设备&#xff0c;提供高效稳定的NTFS卷管理功能。 NTFS 磁盘管理 &#xff1a;NTFS Disk by Omi NTFS 该软件的主…