【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类

前言

在深度学习的世界中,图像分类任务是一个经典的问题,它涉及到识别给定图像中的对象类别。CIFAR-10数据集是一个常用的基准数据集,包含了10个类别的60000张32x32彩色图像。在本博客中,我们将探讨如何使用PyTorch框架创建一个简单的卷积神经网络(CNN)来对CIFAR-10数据集中的图像进行分类。

在下一篇博客中,我们将尝试不断优化模型结构和训练过程,以达到更高的准确率和性能。

引用

关于卷积神经网络的原理,感兴趣的请参阅我的另一篇博客,里面只使用numpy和基础函数组建了一个卷积神经网络模型,并完成训练和测试
【手搓深度学习算法】从头创建卷积神经网络

背景

卷积神经网络是深度学习中用于图像识别和分类的一种强大工具。它们能够自动从图像中提取特征,并通过一系列卷积层、池化层和全连接层来学习图像的复杂模式。

CIFAR-10数据集包含了飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车等10个类别的图像。每个类别有6000张图像,其中50000张用于训练,10000张用于测试。
请添加图片描述

代码解析

我们的目标是构建一个能够处理CIFAR-10数据集的CNN模型。以下是我们的模型结构和数据处理流程的简要概述:

数据预处理

我们首先定义了unpickle函数来加载CIFAR-10数据集的批次文件。read_data函数用于读取数据,将其转换为适合卷积网络输入的格式,并进行归一化处理。我们还提供了一个选项来将图像转换为灰度。

def unpickle(file):import picklewith open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dictdef read_data(file_path, gray = False, percent = 0, normalize = True):data_src = unpickle(file_path)np_data = np.array(data_src["data".encode()]).astype("float32")np_labels = np.array(data_src["labels".encode()]).astype("float32").reshape(-1,1)single_data_length = 32*32 image_ret = Noneif (gray):np_data = (np_data[:, :single_data_length] + np_data[:, single_data_length:(2*single_data_length)] + np_data[:, 2*single_data_length : 3*single_data_length])/3image_ret = np_data.reshape(len(np_data),32,32)else:image_ret = np_data.reshape(len(np_data),32,32,3)if(normalize):mean = np.mean(np_data)std = np.std(np_data)np_data = (np_data - mean) / stdif (percent != 0):np_data = np_data[:int(len(np_data)*percent)]np_labels = np_labels[:int(len(np_labels)*percent)]image_ret = image_ret[:int(len(image_ret)*percent)]num_classes = len(np.unique(np_labels))np_data, np_labels = convert_to_conv_input(np_data, np_labels)return np_data, np_labels, num_classes, image_ret 

网络结构

Conv类定义了我们的CNN模型,它包含一个卷积层、一个最大池化层、一个ReLU激活函数和一个全连接层。在forward方法中,我们指定了数据通过网络的流程。

class Conv(th.nn.Module):def __init__(self, *args, **kwargs) -> None:super(Conv, self).__init__()self.conv = th.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)self.pool = th.nn.MaxPool2d(kernel_size=2,stride=2)self.relu = th.nn.ReLU()self.linear = th.nn.Linear(16*15*15, 10)self.softmax = th.nn.Softmax(dim=1)def forward(self, x):x = self.conv(x) #32,16,30,30x = self.pool(x) #32,16,15,15x = self.relu(x)x = x.view(x.size(0), -1)x = self.linear(x)return x# 在predict函数中,额外调用了softmax,将线性层的10个特征值转化为概率,在前向传播中不用是因为pytorch中交叉熵函数自带了softmaxdef predict(self,x):x = self.forward(x)x = self.softmax(x)return x
卷积层、池化层、线性层的输入特征数量的计算方法

线性层的输入特征个数取决于前面层的输出。
具体来说,线性层的输入特征个数是卷积层和池化层处理后的输出特征图的总元素数量。

卷积层定义如下:

self.conv = th.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)

这里,in_channels=3 表示输入图像有3个颜色通道(RGB),out_channels=16 表示卷积层将输出16个特征图。

接下来是池化层:

self.pool = th.nn.MaxPool2d(kernel_size=2, stride=2)

kernel_size=2,表示池化窗口的大小是2x2。stride=2 表示池化操作的步长是2。

为了计算线性层的输入特征个数,我们需要知道卷积层和池化层之后的输出特征图的大小。这可以通过计算公式得到,或者通过在实际数据上运行网络的前向传播来确定。

计算公式如下:

对于卷积层,输出特征图的大小可以通过以下公式计算:

H_out = (H_in + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1
W_out = (W_in + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1

对于池化层,输出特征图的大小也可以通过类似的公式计算。

由于没有指定paddingdilation,查看函数定义可知它们的默认值分别是0和1。因此,如果输入图像的大小是32x32,卷积层之后的大小将是:

H_out = (32 - 1 * (3 - 1) - 1) / 1 + 1 = 30
W_out = (32 - 1 * (3 - 1) - 1) / 1 + 1 = 30

因此,卷积层的输出将有16个30x30的特征图。

然后,池化层将这些特征图的大小减半(因为kernel_size=2stride=2),所以输出将是16个15x15的特征图。

最后,线性层的输入特征个数将是这些特征图的总元素数量:

num_features = out_channels * H_out_pool * W_out_pool = 16 * 15 * 15 = 3600

因此,线性层的正确定义应该是:

self.linear = th.nn.Linear(3600, num_classes)

训练过程

main函数中,我们初始化了模型、损失函数和优化器。我们使用随机梯度下降(SGD)作为优化算法,并设置了学习率。接着,我们进入了训练循环,其中包括前向传播、损失计算、反向传播和权重更新。

loss_function = th.nn.CrossEntropyLoss()
optimizer = th.optim.SGD(conv_model.parameters(), lr = lr)

测试和评估

训练完成后,我们使用训练好的模型对测试数据进行评估,并计算准确率。我们还提供了一个predict方法,它在给定输入数据后返回模型的预测概率。

def predict(self,x):x = self.forward(x)x = self.softmax(x)return x
softmax激活函数

Softmax 激活函数是一种广泛使用的函数,它将一个实数向量转换为概率分布。在深度学习中,它常常用于多类别分类问题的输出层。

Softmax 函数的定义如下:

softmax ( z ) i = e z i ∑ j e z j \text{softmax}(z)_i = \frac{e^{z_i}}{\sum_{j} e^{z_j}} softmax(z)i=jezjezi

其中 z z z 是输入向量, z i z_i zi z z z 的第 i i i 个元素, softmax ( z ) i \text{softmax}(z)_i softmax(z)i 是输出向量的第 i i i 个元素。

Softmax 函数的主要特性是它的输出是一个概率分布,即所有输出元素的值都在 ( 0 , 1 ) (0, 1) (0,1) 区间内,且所有输出元素的值之和为 1。这使得 Softmax 函数非常适合用于表示概率。

Softmax 函数的一个重要性质是它是连续的,且其导数容易计算。这使得 Softmax 函数在深度学习中的反向传播过程中非常有用。

Softmax 函数的导数如下:

∂ ∂ z i softmax ( z ) i = softmax ( z ) i ( 1 − softmax ( z ) i ) \frac{\partial}{\partial z_i}\text{softmax}(z)_i = \text{softmax}(z)_i(1 - \text{softmax}(z)_i) zisoftmax(z)i=softmax(z)i(1softmax(z)i)

这个导数表达式表明,对于 Softmax 函数的输出 y i y_i yi,其对输入 z i z_i zi 的导数等于 y i ( 1 − y i ) y_i(1 - y_i) yi(1yi)。这个导数表达式在反向传播过程中非常有用,因为它可以直接用于计算梯度。

训练过程中没有使用softmax层,是应为torch的交叉熵损失函数已经包含了softmax的操作,如果叠加使用,可能得到错误的结果。

运行结果

作为一个简单的卷积模型,在测试集上得到了60%的准确率
请添加图片描述

完整代码

本文不提供完整代码,因为随着我的微调优化过程,已经没有这个版本的基线代码了,想要最终代码的欢迎阅读下一篇博客 “记一次卷积网络调优的过程”
在这里插入图片描述

注意点

  • 数据预处理:确保数据被正确地加载和归一化,这对模型的训练效果至关重要。
  • 模型结构:模型的层数和参数需要根据任务的复杂性来调整。过于简单的模型可能无法捕捉到数据中的复杂特征,而过于复杂的模型可能会导致过拟合。
  • 损失函数:我们使用交叉熵损失函数,它适用于多类别分类问题。
  • 优化器:在每次迭代前,记得清除累积的梯度,以避免错误的梯度更新。

可能的优化点

  • 学习率调整:可以尝试使用学习率调度器来在训练过程中调整学习率,以改善模型的收敛速度和性能。
  • 权重初始化:尝试不同的权重初始化方法,以帮助模型更快地收敛。
  • 正则化技术:使用如Dropout、L2正则化等技术来减少过拟合。
  • 数据增强:通过对训练图像进行随机变换(如旋转、缩放、裁剪等),可以增加模型的泛化能力。
  • 更深的网络:考虑增加更多的卷积层和池化层来提取更复杂的特征。
  • 批量归一化:在卷积层之后添加批量归一化层,以稳定训练过程并加速收敛。

结论

通过本博客,我们展示了如何使用PyTorch框架构建一个简单的CNN模型,并在CIFAR-10数据集上进行训练和测试。虽然我们的模型结构相对简单,但它为理解深度学习和图像分类提供了一个很好的起点。在下一篇博客中,我们将尝试不断优化模型结构和训练过程,以达到更高的准确率和性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246080.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS3如何实现从右往左布局的按钮组(固定间距)

可以通过下方CSS实现,下面的CSS表示按钮从右往左布局,且间距为10px: .right-btn {position: relative;float: right;margin-right: 10px; }类似这种: 这种: 注意: 不能使用right:10px代替margin-right:10px&#x…

LINUX基础培训十八之常见服务vsftp介绍

前言、本章学习目标 了解vsftp服务用途掌握配置vsftp服务器掌握vsftp日常使用 一、什么是文件传输协议(VSFTP) vsftpd一红帽企业版linux的默认ftp服务器 不再由xinetd管理 xinetd是一个非独立服务有很多服务要依靠它实现” xinetd是一个daemon程序,所有结尾带d的…

Backtrader 文档学习-Bracket Orders

Backtrader 文档学习-Bracket Orders 1. 概述 组合订单类型是一个非常宽泛的订单类别,只要brokder支持的订单类型都可以, 包括(Market, Limit, Close, Stop, StopLimit, StopTrail, StopTrailLimit, OCO)。 该功能用于回测,交互broker Brac…

银行数据仓库体系实践(3)--数据架构

狭义的数据仓库数据架构用来特指数据分布,广义的数据仓库数据架构还包括数据模型、数据标准和数据治理。即包含相对静态部分如元数据、业务对象数据模型、主数据、共享数据,也包含相对动态部分如数据流转、ETL、整合、访问应用和数据全生命周期管控治理。…

TensorFlow2实战-系列教程2:神经网络分类任务

🧡💛💚TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 1、Mnist数据集 下载mnist数据集: %matplotlib inline from pathlib imp…

项目实战——Qt实现FFmpeg音视频转码器

文章目录 前言一、移植 FFmpeg 相关文件二、绘制 ui 界面三、实现简单的转码四、功能优化1、控件布局及美化2、缩放界面3、实现拖拽4、解析文件5、开启独立线程6、开启定时器7、最终运行效果 五、附录六、资源自取 前言 本文记录使用 Qt 实现 FFmepg 音视频转码器项目的开发过…

【干货】【常用电子元器件介绍】【电阻】(二)--敏感电阻器

声明:本人水平有限,博客可能存在部分错误的地方,请广大读者谅解并向本人反馈错误。   电子电路中除了采用普通电阻器外,还有一些敏感电阻器(如热敏电阻器、压敏电阻器、光敏电阻器等)也被广泛地应用。然而…

【华为 ICT HCIA eNSP 习题汇总】——题目集10

1、以下哪个动态路由协议不能应用在 IPv6 网络中? A、IS-IS B、RIPng C、BGP4 D、OSPFv3 考点:路由技术原理 解析:(A) IS-ISv6 是在 IPv6 环境下,IS-IS 协议进行了相应的扩展和改进,以适应 IPv6…

css中隐藏页面元素的方式(详细讲解)

这里写目录标题 一、前言二、实现方式display:nonevisibility:hiddenopacity:0设置height、width属性为0position:absoluteclip-path小结 三、区别参考文献 一、前言 在平常的样式排版中,我们经常遇到将某个模块隐藏的场景 通过css隐藏元素的方法有很多种&#xf…

vue项目中使用Element多个Form表单同时验证

一、项目需求 在项目中一个页面中需要实现多个Form表单,并在页面提交时需要对多个Form表单进行校验,多个表单都校验成功时才能提交。 二、实现效果 三、多个表单验证 注意项:多个form表单,每个表单上都设置单独的model和ref&am…

matlab对负数开立方根得到虚数的解决方案

问题描述:在matlab中,对负数开立方根,不出意外你将得到虚数。 例如 − 27 3 \sqrt[3]{-27} 3−27 ​,我们知道其实数解是-3,但在matlab中的计算结果如下: 问题原因:matlab中的立方根运算是在…

详细分析Java的树形工具类(含注释)

目录 前言1. 基本框架2. 实战应用 前言 对应的每个子孙属于该父亲,这其实是数据结构的基础知识,那怎么划分怎么归属呢 对应的基本知识推荐如下: 【数据结构】树和二叉树详细分析(全)【数据结构】B树和B树的笔记详细…

vue实现在线Excel表格功能

目录 1.安装x-data-spreadsheet xlsx 2.引入 3.使用 1.安装x-data-spreadsheet xlsx npm i x-data-spreadsheet xlsx2.引入 import zhCN from "x-data-spreadsheet/src/locale/zh-cn"; import Spreadsheet from "x-data-spreadsheet"; import * as X…

Scala基础知识

scala 1、scala简介 ​ scala是运行在JVM上的多范式编程语言,同时支持面向对象和面向函数式编程。 2、scala解释器 要启动scala解释器,只需要以下几步: 按住windows键 r输入scala即可 在scala命令提示窗口中执行:quit,即可退…

mybatis基础知识

title: mybatis的基础知识创建mybatis数据库&#xff0c;创建user表&#xff0c;在里面添加数据 创建空项目&#xff0c;创建maven模块 导入相关的依赖 在pom.xml文件中导入mysql&#xff0c;junit测试&#xff0c;mybatis依赖。 <!--导入mysql依赖--><dependency&g…

四步搞定国赛!快速入门大小模型融合的AI产品开发

前不久&#xff0c;2024中国大学生服务外包创新创业大赛正式启动&#xff01;作为中国高等教育学会“全国普通高校学科竞赛排行榜”竞赛&#xff0c;飞桨赛道已经吸引了超过200位选手报名参赛。 本文旨在助力“A01-基于文心大模型智能阅卷平台设计”赛道选手&#xff0c;更快地…

7.【SpringBoot3】项目部署、属性配置、多环境开发

1. SpringBoot 项目部署 项目完成后&#xff0c;需要部署到服务器上。 SpringBoot 项目需要经过编译打包生成一个 jar 包&#xff08;借助打包插件 spring-boot-maven-plugin&#xff09;&#xff0c;再将该 jar 包发送或拷贝到服务器上&#xff0c;然后就可以通过执行 java …

手机视频压缩怎么压缩?一键瘦身~

现在手机已经成为我们日常生活中必不可少的工具&#xff0c;而在手机的应用领域中&#xff0c;文件的传输和存储是一个非常重要的问题。很多用户都会遇到这样一个问题&#xff0c;那就是在手机上存储的文件太多太大&#xff0c;导致手机存储空间不足&#xff0c;那么怎么在手机…

Typora 无法导出 pdf 问题的解决

目录 问题描述 解决困难 解决方法 问题描述 Windows 下&#xff0c;以前&#xff08;Windows 11&#xff09; Typora 可以顺利较快地由 .md 导出 .pdf 文件&#xff0c;此功能当然非常实用与重要。 然而&#xff0c;有一次电脑因故重装了系统&#xff08;刷机&#xff09;…

SpringMVC 环境搭建入门

SpringMVC 是一种基于 Java 的实现 MVC 设计模型的请求驱动类型的轻量级 Web 框架&#xff0c;属于SpringFrameWork 的后续产品&#xff0c;已经融合在 Spring Web Flow 中。 SpringMVC 已经成为目前最主流的MVC框架之一&#xff0c;并且随着Spring3.0 的发布&#xff0c;全面…