使用OpenCV实现帧间变化检测:基于轮廓的动态区域标注

在计算机视觉中,帧间差异检测(frame differencing)是一种常用的技术,用于检测视频流中的动态变化区域。这种方法尤其适用于监控、运动分析、目标追踪等场景。在这篇博客中,我们将通过分析一个基于OpenCV的简单帧间差异检测代码,深入探讨其应用技术、使用算法以及可能的应用场景。

1. 代码概述
import cv2
import numpy as npclass FrameObject:def __init__(self):self.prev_frame = Noneself.color_list = [(0, 255, 0), (0, 0, 255), (255, 0, 0), (0, 255, 255), (255, 255, 0)]  # 预定义几种颜色def init_parameters(self, *args, **kwargs):passdef get_complementary_color(self, color):"""计算互补色"""return (255 - color[0], 255 - color[1], 255 - color[2])def do(self, frame, device):# 转换为灰度图像gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 如果是第一次处理,保存当前帧并返回原图if self.prev_frame is None:self.prev_frame = gray_framereturn frame# 计算当前帧和上一帧的差异diff = cv2.absdiff(self.prev_frame, gray_frame)# 对差异图像应用阈值,以突出显示变化区域_, thresh = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)# 找到轮廓,标识出变化的区域contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)color_idx = 0  # 颜色索引# 在原始图像上绘制变化区域的轮廓for contour in contours:if cv2.contourArea(contour) > 500:  # 过滤掉小的变化区域(x, y, w, h) = cv2.boundingRect(contour)color = self.color_list[color_idx % len(self.color_list)]  # 循环使用颜色complementary_color = self.get_complementary_color(color)  # 获取对比色# 使用不同的颜色绘制矩形框cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)# 绘制轮廓边界使用对比色cv2.drawContours(frame, [contour], -1, complementary_color, 2)# 增加颜色索引,以便为下一个变化区域使用不同颜色color_idx += 1# 更新上一帧self.prev_frame = gray_framereturn frame
2. 算法解析

该代码实现了一个基于帧间差异检测(frame differencing)的方法,用于检测视频流中连续帧之间的变化。其核心算法步骤如下:

2.1 灰度转换

首先,将每一帧图像转换为灰度图像。这一步的目的是减少计算量,因为灰度图像只包含亮度信息,而去除了色彩信息,这对于变化检测来说已经足够。

gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
2.2 计算帧差异

接下来,使用cv2.absdiff计算当前帧和上一帧的差异。absdiff函数返回两个图像之间每个像素的绝对差值,差异越大的像素值越高,表示该区域发生了变化。

diff = cv2.absdiff(self.prev_frame, gray_frame)
2.3 阈值处理

通过设置一个阈值(在这里是25),我们将差异图像二值化,使得变化显著的区域更加突出。这个阈值操作帮助过滤掉较小的变化,保留较大、明显的动态区域。

_, thresh = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)
2.4 轮廓检测

利用cv2.findContours函数,检测差异图像中的轮廓。轮廓检测可以识别出图像中连续的像素区域,标志着图像中的边界或形状。在这里,我们只关心那些变化较大的区域。

contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
2.5 绘制变化区域

最后,我们对每一个检测到的轮廓绘制矩形框,并且使用不同的颜色突出显示变化区域。为了便于区分不同区域,我们预定义了一些颜色,并为每个轮廓分配一种颜色。在绘制矩形框的同时,还使用互补色来绘制轮廓,增加视觉对比。

cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.drawContours(frame, [contour], -1, complementary_color, 2)
3. 应用场景

帧间差异检测算法常用于以下场景:

3.1 视频监控

在安防领域,帧间差异检测是监控摄像头常用的检测手段,用于实时监控和异常检测。通过对视频帧进行差异分析,可以快速发现场景中是否发生了移动物体,或监控区域内是否出现了异常行为。

3.2 运动分析

运动分析(例如运动员的动作捕捉或体育赛事的动作分析)也可以利用帧间差异检测来提取动态变化区域。这些变化区域可以进一步分析,识别出特定的运动动作或行为模式。

3.3 物体追踪

在目标追踪应用中,帧间差异检测可以作为初步的候选区域检测方法,帮助追踪物体在视频帧中的运动轨迹。通过对每帧图像差异的分析,可以找到物体的位置变化。

3.4 异常检测

除了运动物体的检测,帧间差异检测也可以用于发现场景中的突发变化,比如人群聚集、物体掉落等。这对于自动化的监控系统尤为重要,尤其是在工业生产线、公共安全等领域。

4. 技术优势
4.1 实时性

该方法非常适合实时视频处理。由于计算的是两帧之间的差异,只需对图像进行简单的灰度化、阈值处理和轮廓检测,相比深度学习方法,其计算量小,速度较快,适用于实时应用。

4.2 简单易实现

与基于深度学习的物体检测方法相比,帧间差异检测方法实现简单,不需要大规模的数据集进行训练,也不依赖强大的硬件资源,易于部署和集成。

4.3 高效性

通过阈值处理和轮廓检测,该方法能够有效地过滤掉小范围的变化,减少无关信息,提高了效率和准确性。与基于光流或背景建模的方法相比,帧间差异检测算法在一些场景下可能更加高效。

5. 改进与挑战

尽管帧间差异检测方法简单且高效,但它也有一些局限性:

  • 光照变化的敏感性:如果光照发生变化,可能导致误报或漏报。可以通过引入背景建模技术,减少这一问题。
  • 动态背景:如树枝摆动、风等动态背景也可能被错误地标记为运动区域。对于此类场景,可能需要进一步的后处理步骤,如背景建模或目标检测。

为了进一步提高鲁棒性,可以考虑将该方法与深度学习模型结合,采用深度背景建模或基于卷积神经网络(CNN)的图像差异分析方法,以提升对复杂场景的适应能力。

6. 结论

通过这段代码,我们能够看到帧间差异检测的基本实现方式。这种方法具有快速、实时处理的优势,适用于许多需要检测场景变化的应用,如视频监控、运动分析和异常检测。虽然它在某些动态环境下可能面临挑战,但其简单性和高效性使其成为许多实时视频分析任务中的有效工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/24657.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习01

机器学习的基本过程如下: 1.数据获取 2.数据划分 3.特征提取 4.模型选择与训练 5.模型评估 6.模型调优 一、特征工程(重点) 0. 特征工程步骤为: 特征提取(如果不是像dataframe那样的数据,要进行特征提取&#…

每日Attention学习24——Strip Convolution Block

模块出处 [TIP 21] [link] CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery 模块名称 Strip Convolution Block (SCB) 模块作用 多方向条形特征提取 模块结构 模块特点 类PSP设计,采用四个并行分支提取不同维度的信息相比于…

用FileZilla Server 1.9.4给Windows Server 2025搭建FTP服务端

FileZilla Server 是一款免费的开源 FTP 和 FTPS 服务器软件,分为服务器版和客户端版。服务器版原本只支持Windows操作系统,比如笔者曾长期使用过0.9.60版,那时候就只支持Windows操作系统。当时我们生产环境对FTP稳定性要求较高,比…

es-head(es库-谷歌浏览器插件)

1.下载es-head插件压缩包,并解压缩 2.谷歌浏览器添加插件 3.使用

健康检查、k8s探针、Grails+Liquibase框架/health 404 Not Found排查及解决

概述 健康检查对于一个pod而言,其重要性不言而喻。 k8s通过探针来实现健康检查。 探针 k8s提供三种探针: 存活探针:livenessProbe就绪探针:readinessProbe启动探针:startupProbe 存活探针 存活探针决定何时重启…

5个GitHub热点开源项目!!

1.自托管 Moonlight 游戏串流服务:Sunshine 主语言:C,Star:14.4k,周增长:500 这是一个自托管的 Moonlight 游戏串流服务器端项目,支持所有 Moonlight 客户端。用户可以在自己电脑上搭建一个游戏…

【Linux C | 时间】localtime 的介绍、死机、死锁问题以及 localtime_r 函数的时区问题

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

122. 买卖股票的最佳时机 II 反向递推的方法

下面是将你提供的代码整理成一篇Markdown格式的博客内容: 股票买卖的最大利润 问题描述 给定一个整数数组 prices,其中 prices[i] 是股票在第 i 天的价格。你可以选择在某一天买入股票,并在之后的某一天卖出股票。要求计算出你能够获得的最…

详解Tomcat下载安装以及IDEA配置Tomcat(2023最新)

目录 步骤一:首先确认自己是否已经安装JDK步骤二:下载安装Tomcat步骤三:Tomcat配置环境变量步骤四:验证Tomcat配置是否成功步骤五:为IDEA配置Tomcat 步骤一:首先确认自己是否已经安装JDK jdk各版本通用安…

html中的css

css (cascading style sheets,串联样式表,也叫层叠样式表) css规范一般约定: 1.存放CSS样式文件的目录一般命名为style或css。 2.在项目初期,会把不同类别的样式放于不同的CSS文件,是为了CSS编…

前端项目配置初始化

creat-vue 安装 https://cn.vuejs.org/guide/quick-start.html 官网复制npm安装语句 cmd窗口创建文件夹 npm create vue3.12.2安装webstorm启动vue项目 https://www.jetbrains.com/webstorm/download/other.html 2024.3.2.1 安装依赖 下载包node_modules package 运行服…

Java注解的原理

目录 问题: 作用: 原理: 注解的限制 拓展: 问题: 今天刷面经,发现自己不懂注解的原理,特此记录。 作用: 注解的作用主要是给编译器看的,让它帮忙生成一些代码,或者是帮忙检查…

seacmsv9注入管理员账号密码+orderby+limit

seacmsv9注入管理员账号密码 安装海洋CMS(seacms) 将upload文件夹里的文件全部上传至网页服务器后,执行以下操作: 请运行http://域名/install/index.php进行程序安装 SQL语句尝试注入 http://127.0.0.1/upload/comment/api/index.php?g…

【构建工具】Gradle Kotlin DSL中的大小写陷阱:BuildConfigField

在Android开发当中,BuildConfig是一个非常有用的功能,它允许我们在构建过程中定义常量,并在运行时使用它们。But!!当我们从传统的Groovy DSL迁移到Kotlin DSL时或者被Android Studio坑的时候,有一些细微的差…

AI如何改变传统工厂的生产模式?

随着第四次工业革命的浪潮席卷全球,制造业的数字化转型成为企业在竞争中脱颖而出的关键。过去,传统制造业往往依赖于大量的人工操作和低效率的管理流程,而如今,智能化、自动化、数据化已经成为未来制造业的必由之路。从车间到云端…

Redis

redis启动命令 默认端口启动redis: redis-server redis.windows.conf 指定端口9001和9002启动redis(需要新建配置文件,并修改配置文件port属性): redis-server .\redis-9001.conf redis-server .\redis-9002.conf 检查是否启动Redis &#…

洛谷 P8705:[蓝桥杯 2020 省 B1] 填空题之“试题 E :矩阵” ← 卡特兰数

【题目来源】 https://www.luogu.com.cn/problem/P8705 【题目描述】 把 1∼2020 放在 21010 的矩阵里。要求同一行中右边的比左边大,同一列中下边的比上边的大。一共有多少种方案? 答案很大,你只需要给出方案数除以 2020 的余数即可。 【答案提交】 …

ARM 处理器平台 eMMC Flash 存储磨损测试示例

By Toradex秦海 1). 简介 目前工业嵌入式 ARM 平台最常用的存储器件就是 eMMC Nand Flash 存储,而由于工业设备一般生命周期都比较长,eMMC 存储器件的磨损寿命对于整个设备来说至关重要,因此本文就基于 NXP i.MX8M Mini ARM 处理器平台演示…

14.二叉搜索树

二叉搜索树 1.概念 ⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树: *若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值 *若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点…

8、HTTP/1.0和HTTP/1.1的区别【高频】

第一个是 长连接: HTTP/1.0 默认 短连接,(它也可以指定 Connection 首部字段的值为 Keep-Alive实现 长连接)而HTTP/1.1 默认支持 长连接,HTTP/1.1是基于 TCP/IP协议的,创建一个TCP连接是需要经过三次握手的…