多维时序 | Matlab实现DBO-LSTM蜣螂算法优化长短期记忆神经网络多变量时间序列预测

多维时序 | Matlab实现DBO-LSTM蜣螂算法优化长短期记忆神经网络多变量时间序列预测

目录

    • 多维时序 | Matlab实现DBO-LSTM蜣螂算法优化长短期记忆神经网络多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现DBO-LSTM多变量时间序列预测,蜣螂算法优化长短期记忆神经网络;
蜣螂算法优化LSTM的学习率,隐藏层节点,正则化系数;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整程序和数据下载方式资源处下载:Matlab实现DBO-LSTM蜣螂算法优化长短期记忆神经网络多变量时间序列预测。
%%  优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 8;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-4, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,p_train,t_train,f_);%%  记录最佳参数
Best_pos(1, 2) = round(Best_pos(1, 2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);%%  建立模型
% ----------------------  修改模型结构时需对应修改fical.m中的模型结构  --------------------------
layers = [sequenceInputLayer(f_)            % 输入层reluLayer                         % Relu激活层fullyConnectedLayer(outdim)       % 输出回归层regressionLayer];%%  参数设置
% ----------------------  修改模型参数时需对应修改fical.m中的模型参数  --------------------------
options = trainingOptions('adam', ...           % Adam 梯度下降算法'MaxEpochs', 500, ...                  % 最大训练次数 500'InitialLearnRate', best_lr, ...       % 初始学习率 best_lr'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400, ...        % 经过 400 次训练后 学习率为 best_lr * 0.5'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'ValidationPatience', Inf, ...         % 关闭验证'L2Regularization', best_l2, ...       % 正则化参数'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);%%  仿真验证
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
pFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/247194.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关机恶搞小程序

1. system("shutdown")的介绍 当system函数的参数是"shutdown"时&#xff0c;它将会执行系统的关机命令。 具体来说&#xff0c;system("shutdown")的功能是向操作系统发送一个关机信号&#xff0c;请求关闭计算机。这将触发操作系统执行一系列…

vscode的扩展商店使用时报错 XHR failed

文章目录 前言解决扩展商店的使用github的相关问题 前言 这几天使用vscode扩展商店安装插件时发现一搜索就报错&#xff0c;网上搜了一些解决方法&#xff0c;看起来不大靠谱。而且用了好几年了vscode都没出现过这个问题&#xff0c;感觉是网络问题。 解决扩展商店的使用 首先…

用 CanvasKit 实现超级丝滑的原神地图(已开源)!!!

首先给大家送上预览地址&#xff1a; 官网地址&#xff1a;https://webstatic.mihoyo.com/ys/app/interactive-map/index.html canvaskit地址&#xff1a;http://106.55.55.247/ky-genshin-map/ 为什么 canvaskit 有如此高的性能&#xff1f; 第一个问题&#xff0c;官方网页…

JVM性能分析工具——Arthas及火焰图的使用

Arthas的使用 Arthas常用命令Arthas的安装Linux压测工具Apache Bench安装火焰图的使用火焰图如何分析火焰图的互动 Arthas常用命令 help &#xff1a;查看所有命令dashboard &#xff1a;仪表板&#xff0c;查看线程的CPU信息等heapdump &#xff1a;不同类对象占用内存比重&a…

python算法与数据结构---滑动窗口双指针

学习目标 了解滑动窗口的基本原理&#xff1b;学会用使用python语言解答滑动窗口经典题目&#xff1b;了解双指针的基本原理&#xff1b;学会使用python语言解答双指针经典题目&#xff1b; 滑动窗口 209. 长度最小的子数组 https://leetcode.cn/problems/minimum-size-sub…

初识人工智能,一文读懂机器学习之逻辑回归知识文集(6)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

深入理解TCP网络协议(1)

目录 1.TCP协议的段格式 2.TCP原理 2.1确认应答 2.2超时重传 3.三次握手(重点) 4.四次挥手 1.TCP协议的段格式 我们先来观察一下TCP协议的段格式图解: 源/目的端口号:标识数据从哪个进程来,到哪个进程去 32位序号/32位确认号:TCP会话的每一端都包含一个32位&#xff08…

linux 的nobody是什么用户? 对安全有没有影响?

目录 一、nobody是不是可疑用户&#xff1f; 二、Linux系统中的nobody用户&#xff1f; 三、有nobody用户存在&#xff0c;安全吗&#xff1f; 一、nobody是不是可疑用户&#xff1f; 在Linux系统中&#xff0c;nobody是一个特殊的用户账户&#xff0c;通常用于运行系统服务…

UE5在VisualStudio升级后产生C++无法编译的问题

往期的虚幻引擎项目在VS更新后&#xff0c;编译时会报错&#xff0c;这一般出现在VS升级之后&#xff0c;UE对于VC的编译器定位没有更新导致&#xff1b; 有出现如下问题&#xff1a; 问题1&#xff1a; Running I:/EPCI/Epic Games/UE_5.3/Engine/Build/BatchFiles/Build.ba…

C++设计模式介绍:优雅编程的艺术

物以类聚 人以群分 文章目录 简介为什么有设计模式&#xff1f; 设计模式七大原则单一职责原则&#xff08;Single Responsibility Principle - SRP&#xff09;开放封闭原则&#xff08;Open/Closed Principle - OCP&#xff09;里氏替换原则&#xff08;Liskov Substitution …

市场复盘总结 20240124

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 昨日主题投资 连板进级率 19/43 28.2% 二进三&#xff1a; 进级率低 47% 最常用的二种方法&#xff1a; 方…

【数据结构四】栈与Stack详解

目录 栈与Stack 1.实现一个自己的栈 2.Stack的基本使用 3.栈的一些oj题训练 4.栈&#xff0c;虚拟机栈&#xff0c;栈帧的区别 栈与Stack 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶…

【音视频原理】音频编解码原理 ③ ( 音频 比特率 / 码率 | 音频 帧 / 帧长 | 音频 帧 采样排列方式 - 交错模式 和 非交错模式 )

文章目录 一、音频 比特率 / 码率1、音频 比特率2、音频 比特率 案例3、音频 码率4、音频 码率相关因素5、常见的 音频 码率6、视频码率 - 仅做参考 二、音频 帧 / 帧长1、音频帧2、音频 帧长度 三、音频 帧 采样排列方式 - 交错模式 和 非交错模式1、交错模式2、非交错模式 一…

微信小程序-04

rpx&#xff08;responsive pixel&#xff09;是微信小程序独有的&#xff0c;用来解决屏适配的尺寸单位。 import 后跟需要导入的外联样式表的相对路径&#xff0c;用 ; 表示语句结束。 定义在 app.wxss 中的样式为全局样式&#xff0c;作用于每一个页面。 在页面的 .wxss 文…

薅运营商羊毛?封杀!

最近边小缘在蓝点网上看到一则消息 “浙江联通也开始严格排查PCDN和PT等大流量行为 被检测到可能会封停宽带”。 此前中国联通已经在四川和上海等多个省市严查家庭宽带 (部分企业宽带也被查) 使用 PCDN 或 PT&#xff0c;当用户的宽带账户存在大量上传数据的情况&#xff0c;中…

【USTC】verilog 习题练习 46-50

46 上升沿检测 题目描述 在实际应用中&#xff0c;我们经常需要对某个信号的边沿进行检测&#xff0c;并以此作为后续动作的触发信号&#xff08;例如电脑键盘的某个按键被按下或者被松开&#xff0c;在电路中则对应的是电平的变化&#xff09;。 设计一个电路&#xff0c;包…

幻兽帕鲁服务器价格,这个价格不够电费的

幻兽帕鲁服务器价格多少钱&#xff1f;4核16G服务器Palworld官方推荐配置&#xff0c;阿里云4核16G服务器32元1个月、96元3个月&#xff0c;腾讯云换手帕服务器服务器4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64G3…

QT之 QDebug 调试(一)

在QT中&#xff0c;进行调试&#xff0c;则需要在头文件地方加上 #include <QDebug> 加上之后&#xff0c;在编译之后则其输出的信息则在应用程序输出那里显示信息。 其QDebug 信息调试则如&#xff1a; qDebug() << " 需要插入的信息 "…

2000-2022年上市公司全要素生产率测算固定效应FE法(含原始数据+测算代码do文档+计算结果)

2000-2022年上市公司全要素生产率测算固定效应FE法&#xff08;含原始数据测算代码do文档计算结果&#xff09; 1、时间&#xff1a;2000-2022年 2、范围&#xff1a;上市公司 3、指标&#xff1a;证券代码、证券简称、统计截止日期、固定资产净额、year、股票简称、报表类型…

C# RichTextBox常用属性、方法学习1

1 字体 Font font1 new Font("宋体", 18); richTextBox1.Font font1; Font font2 new Font("宋体", 10, FontStyle.Underline); richTextBox1.SelectionFont font2; 定义字体&#xff0c;可以带2个参数&#…