从CNN ,LSTM 到Transformer的综述

前情提要:文本大量参照了以下的博客,本文创作的初衷是为了分享博主自己的学习和理解。对于刚开始接触NLP的同学来说,可以结合唐宇迪老师的B站视频【【NLP精华版教程】强推!不愧是的最完整的NLP教程和学习路线图从原理构成开始学,学完可实战!-哔哩哔哩】 https://b23.tv/WwVQnKr​​​​​​​和【【唐博士带你学AI】NLP最著名的语言模型-BERT 10小时精讲,原理+源码+论文,计算机博士带你打通NLP-哔哩哔哩】 https://b23.tv/0ZtLcoj这两个视频使用Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT-CSDN博客

本文的大纲是:

目录

第一部分 单词向量化

1.1 word embedding 

1.1.1 理解什么是one-hot representation

1.1.2 理解什么是distribution representation

1.1.2.1我们现在提出一个比one-hot更高级的文本向量化要求:

我们来比较一下词袋模型(bag of wordsmodel)和词嵌⼊模型(word embedding model)的区别:

1.1.2.2 如何用distribution representation把单词变成一个跟单词上下文有关,有语义的向量呢?

 第二部分 从Seq2Seq序列引入Encoder-Decoder模型:RNN/LSTM与GRU

2.1 什么是Seq2Seq序列问题:输入一个序列 输出一个序列

2.2 介绍Encoder-Decoder模型:RNN/LSTM与GRU

2.3 开始介绍注意力机制(Attention)

第三部分 transformer 

3.1自注意力部分: 

3.1.1 先来认识一下三个向量

3.1.2 attention整体流程 

第三、四步:分数除以8然后softmax

3.2 多头注意力机制“multi-headed” attention

3.2.1 定义

3.2.2过程介绍


第一部分 单词向量化

1.1 word embedding 

单词向量化是本节任务的一个基础,因为我们不可能直接把人类的单词文本直接输入到模型中去吧,我们要转换成计算机能够看懂的语言形式。所以,单词向量化,顾名思义,就是把单词转化成向量的形式表示,在论文中我们经常看到一个单词(embedding),用词典翻译它就是“嵌入“,我们会感到一头雾水。我们其实可以理解为:embedding就是一个映射,将单词从原先所属空间映射(嵌入)到新的多维空间(变成向量)。

在自然语言处理任务中,有两种单词向量化的方法:
·onehot representation(独热形式)

·distribution representation(分配形式)

1.1.1 理解什么是one-hot representation

我们直接用下面的例子简单最粗暴的理解:从形式上看,每个向量之间的内积为0,也就是每个向量是互相正交的,除了当前单词位置的值为1之外,其余位置的值都为0,。

假设⽤ one-hot对句⼦进⾏表示,对句⼦分词之后,我们可以得到['我‘ , ’爱‘ , ’北京‘ , ’天安⻔‘],可以⽤one hot(独热编码)对单词进⾏编码。具体为:

“我”可以表示为[1,0,0,0]

"爱"可以表示为[0,1,0,0]

'北京'可以表示为[0,0,1,0]

'天安⻔'可以表示为[0,0,0,1]

缺点:这样单词编码之间互相正交的形式,使得的向量之间(单词)之间没有语义上的联系。

1.1.2 理解什么是distribution representation

这一节可以看唐宇迪的视频来理解:【【word2vec词向量模型】原理详解+代码实现,迪哥竟然把NLP最热门的词向量模型讲解的如此通俗易懂!-哔哩哔哩】 https://b23.tv/YJ6OMVX

        不同于 one-hot粗暴的用1和0来编码,distribution representation克服了 one-hot的缺点:单词)之间没有语义上的联系。

分布式表示(distribution representation)将词转化为⼀个定⻓向量(可指定)、稠密并且互相存在语义关系(语义蕴藏在了向量的这些数字里面)的向量。

对比一下理解什么叫“蕴藏在了向量的这些数字”: 

one-hot:[1,0,0,0]

distribution:[0.3,0.2,0.1,0.5]    #是不是很长的像一个加权占比

1.1.2.1我们现在提出一个比one-hot更高级的文本向量化要求:

(本质上是因为distribution representation在向量化的过程中,要利用当前单词的上下文来训练模型,所以上下文语义自然蕴含在训练好的单词向量的每一维度的数值中 eg:[0.3,0.2,0.1,0.5]。

1.这个单词向量化模型要考虑单词出现的顺序:假设文本顺序为my name is chenfangyi ,出来的单词向量化中name 单词的编码(假设是[0.3,0.2,0.1,0.5])必须得体现出文本的顺序,比如只能先有name,再有is 和chenfangyi 吧,这样才符合我们人类的思维。

2.这个单词向量化模型词与词之间的等价关系要考虑到

eg:"nlp”单词要和“自然语言处理”映射到同一个向量空间,且语义相近的词在空间中离得要近。

这里插入一个跟本文主线不相关的概念:

我们来比较一下词袋模型(bag of wordsmodel)和词嵌⼊模型(word embedding model)的区别:

词袋模型对整个文档的向量化,反映的是整个文档的单词,而本文提到的词嵌⼊模型是针对单个单词向量化,只不过在某些方法中单词的向量化与它的上下文也有关联。

1 词袋模型和编码⽅法

1.1 ⽂本向量化

⽂本向量化就是指⽤数值向量来表示⽂本的语义,即,把⼈类可读的⽂本转化成机器可读形式。

如何转化成机器可读的形式?这⾥⽤到了信息检索领域的词袋模型,词袋模型在部分保留⽂本语义的前提下对⽂本进⾏向量化表示。在后面的信息抽取博客打下基础

1.2 词袋及编码⽅法

我们先来看2个例句:

Jane wants to go to Shenzhen.

Bob wants to go to Shanghai.

将所有词语装进⼀个袋⼦⾥,不考虑其词法和语序的问题,即每个词语都

是独⽴的。例如上⾯2个例句,就可以构成⼀个词袋,袋⼦⾥包括Jane、

wants、to、go、Shenzhen、Bob、Shanghai。假设建⽴⼀个数组(或词

典)⽤于映射匹配:

[Jane, wants, to, go, Shenzhen, Bob, Shanghai]

那么上⾯两个例句就可以⽤以下两个向量表示,对应的下标与映射数组的

下标相匹配,其值为该词语出现的次数:

# 词典的key值:[Jane, wants, to, go, Shenzhen, Bob, Shanghai]

1 [1,1,2,1,1,0,0]

2 [0,1,2,1,0,1,1]

词频向量就是词袋模型,可以很明显的看到语序关系已经完全丢

失。

1.3 类型介绍

1.3.1 它也可以one-hot编码

对于每⼀个单词,我们观察该词语是否出现,出现就为1,没有出现就

是0,得到⽂本向量,规则如下:


1.3.2 TF 编码

1.2例句介绍用的就是这个,TF表示法的数值计算规则为:词语序列中出现的词语其数值为词语在所在⽂本中的频次,词语序列中未出现的词语其数值为0。

​​​​​​​

1.3.3  TF- IDF表示法

TF-IDF表示法的数值计算规则为:词语序列中出现的词语其数值为词语在
 所在⽂本中的频次乘以词语的逆⽂档频率,词语序列中未出现的词语其数
 值为0。⽤数学式⼦表达为:

1.1.2.2 如何用distribution representation把单词变成一个跟单词上下文有关,有语义的向量呢?

        假设我们的句子是A_B_C,对于单词C来说,A B就是它的上下文。我们的模型本质是一个单词预测模型已知AB,预测单词C(分类模型:最终输出的结果是整个单词语料库每个单词预测的概率),那就有疑问了,不是说是一个目的是把单词转化成蕴藏上下文语义的向量化模型吗?怎么叫单词的预测模型了?

        因为我们在输入的时候,不可能直接把单词直接输入网路,我们把单词A,B表示成了一个初始化的向量(诶,那我们的任务不就结束了吗,已经单词向量化了呀?)并不是,这个初始化是我们自己定的,我们要利用这个单词预测模型来达到:不断更新单词A和B初始化向量里面的数值。

简而言之,这个单词预测模型只是一个帮手,我们其实不是要最终的输出结果,我们要知道模型每次训练除了更新权重参数,还会更新每次的输入值,我们要的就是,最终,模型训练好之后,输入的词向量里面的向量每一个维度的数值):“A”和“B”会由初始值不断更新(前向训练,反向传播)直到得到的最终的向量 。注:向量 【0.3,0.2,0.1,0.5】里面这4个数据(不一定维度一定是4,只是假设)

模型的输入是:A(假设是shalt并且已经随机向量初始化)和Bthou(假设是shalt并且已经随机向量初始化)蕴藏上下文语义的向量:

eg :

 ​​​​​​​模型的输出就是:在整个语料库中每个词预测正确的概率值

总结起来就是,在这个预测模型中,随着预测单词的结果匹配语料库的概率值越来越接近真实值C,每次训练模型的输入值都会发生变化,最终我们想要的结果是蕴藏上下文语义的输入向量就得到了。

构建训练数据:

​​​​​​​

 第二部分 从Seq2Seq序列引入Encoder-Decoder模型:RNN/LSTM与GRU

2.1 什么是Seq2Seq序列问题:输入一个序列 输出一个序列

比如翻译模型:
​​​​​​​

2.2 介绍Encoder-Decoder模型:RNN/LSTM与GRU

 这里推荐直接去看这个大佬的博客:​​​​​​​如何从RNN起步,一步一步通俗理解LSTM_rnn lstm-CSDN博客

大佬写的超级好,这里就不再赘述了。

2.3 开始介绍注意力机制(Attention)

·对于Seq2Seq without Attention来说:Encoder(编码器)和 Decoder(解码器)之间只有一个「向量C」来传递信息,且C的长度固定。当输入句子比较长时,所有语义完全转换为一个中间语义向量C来表示,单词原始的信息已经消失,可想而知会丢失很多细节信息

而为了解决「信息过长,信息丢失」的问题,Attention 机制就应运而生了。

·对于Seq2Seq with Attention来说:Eecoder 不再将整个输入序列编码为固定长度的「中间向量C」,而是编码成一个向量的序列(包含多个向量)。

 Attention 机制:

​​​​​​​对于中间语义编码和attention值之间的关系:看这个博主的https://blog.csdn.net/qq_45556665/article/details/127459191这一部分博客


我现在的理解是:经过Encoder,被编码成语义编码C,语义编码是一块高度抽象的内容。Ci 就是第i个单词的attention值,它是一个中间语义编码,解码(Y1 = f1 ( C1 ) ; Y2 = f1 ( C2 ,Y1 ) ; Y3 = f1 (C3 ,Y1,Y2 ))完成后输出序列 {Y1=“汤姆”,Y2=“追逐”,Y3=“杰瑞”}

在下面的transformer中,会用到另一种机制 self-attention.

1.注意力机制Attention发生在Target的元素Query和Source中的所有元素之间。

2.而Self Attention顾名思义,指的不是Target和Source之间的Attention机制,而是Source内部元素之间或者Target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力计算机制。其具体计算过程是一样的,只是计算对象发生了变化而已。
3.可以粗暴的理解为:self-attention是attention的一种特殊情况

第三部分 transformer 

这一部分建议看这个视频:【【唐博士带你学AI】NLP最著名的语言模型-BERT 10小时精讲,原理+源码+论文,计算机博士带你打通NLP-哔哩哔哩】 https://b23.tv/NwnylCo

还是考虑上文中已经出现过的机器翻译的模型(Transformer一开始的提出即是为了更好的解决机器翻译问题)。

3.1自注意力部分: 

3.1.1 先来认识一下三个向量

每个单词各自创建一个查询向量、一个键向量和一个值向量

3.1.2 attention整体流程 

第一步:生成查询向量、键向量和值向量

第二步:计算得分:要去查询的单词(Query)去点积例子中所有词的键向量key 

·q1和k1的点积(根据点积结果可以判断q1和k1这个向量的相似性)

·q1和k2的点积(根据点积结果可以判断q1和k2这个向量的相似性)

第三、四步:分数除以8然后softmax

第五、六步:值向量乘以softmax分数后对加权值向量求和

整体思路会发现,self-attention和attention 几乎一样,区别在于Target?=Source

3.2 多头注意力机制“multi-headed” attention

3.2.1 定义

简单的说就是,多来几对W^{Q} W^{K} W^{V}”的矩阵集合

3.2.2过程介绍

如果我们做与上述相同的自注意力计算,只需8次不同的权重矩阵运算,我们就会得到8个不同的Z矩阵


前馈层没法一下子接收多个矩阵,它需要一个单一的矩阵(矩阵中每个的行向量对应一个单词,比如矩阵的第一行对应单词Thinking、矩阵的第二行对应单词Machines)
所以我们需要一种方法把这多个矩阵合并成一个矩阵。直接把这些矩阵拼接在一起,然后乘以一个附加的权重矩阵

3.2.3 为什么要用“多头 ”,“1个头”不行吗?

        我们在学习计算机视觉的时候,对于线性分类的的权值模版,在不考虑代价的情况的自然是多多益善。这样机器能学到更多的图像特征,图像分类任务会更加精准。

        在本文这个任务重,通过不同的head得到不同的特征表达。总有一个头会关注到咱们想关注的点,避免在编码时遗漏了我们想要关注的点。

3.3  Transformer 的编码器和解码器

3.3.1 编码器 将源语转化为一个中间语义向量C

1.先经过一个自注意力层(self-attention ):self-attention机制会帮助编码器在对每个单词编码时关注输入句子中的的其他单词。

2.前馈(feed-forward)神经网络

注:可能会有好几层这样的结构

3.3.2 解码器

1 .一个带masked的Multi-Head Attention,本质是Self-Attention :

自注意力层只允许关注已输出位置的信息,实现方法是在自注意力层的softmax之前进行mask,将未输出位置的权重设置为一个非常大的负数(进一步softmax之后基本变为0,相当于直接屏蔽了未输出位置的信息) 简而言之就是,在翻译第i个单词的时候,不能看到第i个后面翻译的单词

2.一个不带masked的Multi-Head Attention,本质是Encoder-Decoder Attention

这个注意力层的K 和V都来自Encoder最后一层的输出,Q来自于上一个Decoder单元的输出

比如当我们要把“Hello Word”翻译为“你好,世界”时:
在解码并输出 “你好”时,会关注编码器的“Hello ​​​​​​​”和“Word”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/247470.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP_拥塞控制

引言 24年春节马上就要到了,作为开车党,最大的期盼就是顺利回家过年不要堵车。梦想是美好的,但现实是骨感的,拥堵的道路让人苦不堪言。 在网络世界中,类似于堵车的问题也存在,而TCP(Transmissi…

如何使用Everything随时随地远程访问本地电脑搜索文件

文章目录 前言1.软件安装完成后,打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 前言 要搭建一个在线资料库,我们需要两个软件的支持,分别是cpolar(用于搭建内网穿透数据隧道…

数据结构排序算详解(动态图+代码描述)

目录 1、直接插入排序(升序) 2、希尔排序(升序) 3、选择排序(升序) 方式一(一个指针) 方式二(两个指针) 4、堆排序(升序) 5、冒…

go包与依赖管理

包(package) 包介绍 Go语言中支持模块化的开发理念,在Go语言中使用包(package)来支持代码模块化和代码复用。一个包是由一个或多个Go源码文件(.go结尾的文件)组成,是一种高级的代码…

CSS之定位

定位在CSS当中是一个比较重要的点,接下来,让我为大家介绍一下定位吧! 属性描述position-relative相对定位position-absolute绝对定位position-fixed固定定位position-sticky粘性定位position-static静态定位 一、相对定位 给元素设置 posi…

Vue-40、Vue中TodoList案例

1、MyHeader.vue <template><div class"todo-header"><input type"text" placeholder"请输入你的任务名称&#xff0c;按回车键确认" v-model"title" keyup.enter"add"></div> </template>&…

OpenHarmony—仅允许在表达式中使用typeof运算符

规则&#xff1a;arkts-no-type-query 级别&#xff1a;错误 ArkTS仅支持在表达式中使用typeof运算符&#xff0c;不允许使用typeof作为类型。 TypeScript let n1 42; let s1 foo; console.log(typeof n1); // number console.log(typeof s1); // string let n2: typeof …

什么是SQL,什么是MYSQL?MYSQL的架构以及SQL执行语句的过程是什么?有哪些数据库的类型?一篇文章带你弄懂!

文章目录 前言一、为什么需要数据库二、数据库的相关概念1.什么是结构化查询语言 (SQL)2.什么是数据库管理系统 (DBMS)3.什么是 MySQL 数据库 三、数据库分类1.关系型数据库&#xff08;SQL&#xff09;2.非关系型数据库&#xff08;NoSQL&#xff09; 四、MYSQL架构1.各组件功…

ES 分词器

概述 分词器的主要作用将用户输入的一段文本&#xff0c;按照一定逻辑&#xff0c;分析成多个词语的一种工具 什么是分词器 顾名思义&#xff0c;文本分析就是把全文本转换成一系列单词&#xff08;term/token&#xff09;的过程&#xff0c;也叫分词。在 ES 中&#xff0c;Ana…

河南冷链物流盛典 华鼎科技引领行业创新共筑冷链强省梦

近日&#xff0c;由河南省商务厅指导、河南省物流协会主办的在郑州举行&#xff0c;本次大会以“创新驱动未来”为主题,近300名冷链物流行业精英、专家学者等参加了本届盛典。 河南省委、省政府高度重视物流业发展&#xff0c;出台了《河南省“十四五”现代物流业发展规划》、…

go数据格式-JSON、XML、MSGPack

1. JSON json是完全独立于语言的文本格式&#xff0c;是k-v的形式 name:zs应用场景&#xff1a;前后端交互&#xff0c;系统间数据交互 json使用go语言内置的encoding/json 标准库编码json使用json.Marshal()函数可以对一组数据进行JSON格式的编码 func Marshal(v interface{}…

OkHttp完全解读

一&#xff0c;概述 OkHttp作为android非常流行的网络框架&#xff0c;笔者认为有必要剖析此框架实现原理&#xff0c;抽取并理解此框架优秀的设计模式。OkHttp有几个重要的作用&#xff0c;如桥接、缓存、连接复用等&#xff0c;本文笔者将从使用出发&#xff0c;解读源码&am…

git配置用户名和邮箱

1.git 1.配置用户名和邮箱 2.git初体验 git init 初始化git仓库 管理项目让git管理你的本次代码变更 git add .git commit -m “你完成的功能” 后续如果新增/修改/删除代码&#xff0c; 完成新功能时 重复2 3.查看日志 1.git log 4.版本回退 1.查看提交的版本记录 git l…

恒创科技:云服务器公网带宽选择多少合适?有计算公式吗?

随着云计算技术的不断发展&#xff0c;越来越多的企业和个人选择使用云服务器来部署应用和存储数据。而在选择云服务器时&#xff0c;公网带宽是一个重要的参数&#xff0c;它直接影响到服务器的网络性能和数据传输速度。 公网带宽是指云服务器在互联网上的数据传输速率&#x…

内网安全:Exchange服务

目录 Exchange服务 实验环境 域横向移动-内网服务-Exchange探针 一. 端口扫描 二. SPN扫描 三. 脚本探针(还可以探针是否有安全漏洞) 域横向移动-内网服务-Exchange爆破 一 .BurpSuite Intruder模块爆破 域横向移动-内网服务-Exchange漏洞 CVE-2020-17144 Exchange R…

怎样用流程自定义表单提升办公效率?

如果想要提升办公协作效率&#xff0c;可以试试低代码技术平台及流程自定义表单工具。不可否认的是&#xff0c;随着社会的进步和发展&#xff0c;传统的表单制作工具已经没有办法再满足业务量不断上涨的办公需求了&#xff0c;但是&#xff0c;借助专业的流程自定义表单工具就…

4核16G幻兽帕鲁服务器优惠价格表,阿里云和腾讯云报价

幻兽帕鲁服务器价格多少钱&#xff1f;4核16G服务器Palworld官方推荐配置&#xff0c;阿里云4核16G服务器32元1个月、96元3个月&#xff0c;腾讯云幻兽帕鲁服务器服务器4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64…

【C++杂货铺】详解类和对象 [中]

博主&#xff1a;代码菌-CSDN博客 专栏&#xff1a;C杂货铺_代码菌的博客-CSDN博客 目录 &#x1f308;前言&#x1f308; &#x1f4c1; 类的6个默认成员函数 &#x1f4c1; 构造函数 &#x1f4c2; 概念 &#x1f4c2; 特性&#xff08;灰常重要&#xff09; &#x1f4c…

恒驰喜讯 | 荣获5项表彰!旭龙乘风起,同心聚沪上,2024年华为上海政企合作伙伴大会成功举办

1月24日&#xff0c;2024年华为上海政企合作伙伴大会暨颁奖典礼在上海成功举办。本次大会以“旭龙乘风起&#xff0c;同心聚沪上”为主题&#xff0c;分为“倾听伙伴声音、传递价值主张、携手伙伴共赢”三个篇章&#xff0c;表彰在2023年度做出卓越贡献的伙伴。上海恒驰信息系统…

RabbitMQ问题总结

:::info 使用场景 异步发送&#xff08;验证码、短信、邮件。。。&#xff09;MySQL 和 Redis、ES 之间的数据同步分布式事务削峰填谷… ::: 如何保证消息不丢失 上图是消息正常发送的一个过程&#xff0c;那在哪个环节中消息容易丢失&#xff1f;在哪一个环节都可能丢失 生…