stm32中的SPI

SPI的简介

文章目录

  • SPI的简介
    • 物理层
    • 协议层
      • 基本通讯过程
        • 起始和终止信号
        • 数据有效性
        • CPOL/CPHA及通讯模式
  • STM3的SPI特性及架构
    • 通讯引脚
    • 时钟控制逻辑
    • 数据控制逻辑
    • 整体控制逻辑
    • 通讯过程
  • 代码配置实现
    • 指令集
    • 结构体的定义
      • SPI时钟信号的定义
      • SPI端口定义
      • SPI命令
    • flash驱动代码
      • 初始化代码(配置端口)
      • 配置SPI模式代码
      • 发送并接受一个字节
      • 读取字节
      • 读取ID号
      • FLASH写入使能
      • 等待FLASH内部时序操作完成
      • 擦除FLASH指定扇区

物理层

在这里插入图片描述

SPI一共三条总线

SPI总线功能
SS( Slave Select)选从机
SCK (Serial Clock)时钟信号线,用于通讯数据同步。它由通讯主机产生,决定了通讯的速率
MOSI (Master Output,Slave Input)主设备输出/从设备输入引脚。这条线上数据的方向为主机到从机。
MISO (Master Input,,Slave Output)主设备输入/从设备输出引脚。在这条线上数据的方向为从机到主机。

协议层

基本通讯过程

在这里插入图片描述

  1. NSS为低电平时候才有效
  2. SCK每一个周期MOSI和MISO传输一位数据
起始和终止信号
  • 起始:高变低
  • 终止:低变高
数据有效性
  • SPI 使用 MOSI 及 MISO 信号线来传输数据,使用 SCK 信号线进行数据同步。MOSI 及 MISO 数据线在 SCK 的每个时钟周期传输一位数据,且数据输入输出是同时进行的。数据传输时,MSB先行或 LSB 先行并没有作硬性规定,但要保证两个 SPI 通讯设备之间使用同样的协定,一般都会采用图 SPI 通讯时序 中的 MSB 先行模式。
  • 即在 SCK 的下降沿时刻,MOSI 及 MISO 的数据有效,高电平时表示数据“1”,为低电平时表示数据“0”。在其它时刻,数据无效,MOSI 及 MISO 为下一次表示数据做准备。SPI 每次数据传输可以 8 位或 16 位为单位,每次传输的单位数不受限制。
CPOL/CPHA及通讯模式

在这里插入图片描述
在这里插入图片描述
CPHA:当 CPHA=0 时,MOSI 或 MISO 数据线上的信号将会在SCK 时钟线的“奇数边沿”被采样。当 CPHA=1 时,数据线在 SCK 的“偶数边沿”采样。一个边沿被设置为采样后另一个边沿只能为读取数据。
在这里插入图片描述

CPOL:控制SCK空闲时刻的电平,0为低电平,1为高电平。

在这里插入图片描述

STM3的SPI特性及架构

在这里插入图片描述

通讯引脚

在这里插入图片描述

时钟控制逻辑

由波特率发生器根据“控制寄存器 CR1”中的 BR[0:2] 位控制

在这里插入图片描述

数据控制逻辑

SPI 的 MOSI 及 MISO 都连接到数据移位寄存器上,数据移位寄存器的数据来源及目标接收、发送缓冲区以及 MISO、MOSI 线。

当从外部接收数据的时候,数据移位寄存器把数据线采样到的数据一位一位地存储到“接收缓冲区”中。

通过写 SPI 的“数据寄存器 DR”把数据填充到发送缓冲区中,通讯读“数据寄存器 DR”,可以获取接收缓冲区中的内容。

DR[15:0]:数据寄存器 (Data register) 待发送或者已经收到的数据

数据寄存器对应两个缓冲区:一个用于写(发送缓冲);另外一个用于读(接收缓冲)。写操作将数据写到发送缓冲区;读操作将返回接收缓冲区里的数据。

**对SPI模式的注释:**根据SPI_CR1的DFF位对数据帧格式的选择,数据的发送和接收可以是8位或者16位的。为保证正确的操作,需要在启用SPI之前就确定好数据帧格式。

对于8位的数据,缓冲器是8位的,发送和接收时只会用到SPI_DR[7:0]。在接收时,SPI_DR[15:8]被强制为0。

对于16位的数据,缓冲器是16位的,发送和接收时会用到整个数据寄存器,即SPI_DR[15:0]。

**其中数据帧:**长度可以通过“控制寄存器 CR1”的“DFF 位”配置成 8 位及 16 位模式;配置“LSBFIRST 位”可选择 MSB 先行还是 LSB 先行。

整体控制逻辑

整体控制逻辑负责协调整个 SPI 外设,控制逻辑的工作模式根据我们配置的“控制寄存器(CR1/CR2)”的参数而改变基本的控制参数包括前面提到的 SPI 模式、波特率、LSB 先行、主从模式、单双向模式等等。

通讯过程

在这里插入图片描述

(1) 控制 NSS 信号线,产生起始信号 (图中没有画出);

(2) 把要发送的数据写入到“数据寄存器 DR”中,该数据会被存储到发送缓冲区;

(3) 通讯开始,SCK 时钟开始运行。MOSI 把发送缓冲区中的数据一位一位地传输出去;MISO 则把数据一位一位地存储进接收缓冲区中;

(4) 当发送完一帧数据的时候,“状态寄存器 SR”中的“TXE 标志位”会被置 1,表示传输完一帧,发送缓冲区已空;类似地,当接收完一帧数据的时候,“RXNE 标志位”会被置 1,表示传输完一帧,接收缓冲区非空;

(5) 等待到“TXE 标志位”为 1 时,若还要继续发送数据,则再次往“数据寄存器 DR”写入数据即可;等待到“RXNE 标志位”为 1 时,通过读取“数据寄存器 DR”可以获取接收缓冲区中的内容。假如我们使能了 TXE 或 RXNE 中断,TXE 或 RXNE 置 1 时会产生 SPI 中断信号,进入同一个中断服务函数,到 SPI 中断服务程序后,可通过检查寄存器位来了解是哪一个事件,再分别进行处理。也可以使用 DMA 方式来收发“数据寄存器 DR”中的数据

代码配置实现

指令集

在这里插入图片描述

结构体的定义

SPI时钟信号的定义

#define             FLASH_SPIx                                SPI1
#define             FLASH_SPI_APBxClock_FUN                  RCC_APB2PeriphClockCmd
#define             FLASH_SPI_CLK                             RCC_APB2Periph_SPI1
#define             FLASH_SPI_GPIO_APBxClock_FUN            RCC_APB2PeriphClockCmd

SPI端口定义

#define             FLASH_SPI_SCK_PORT                        GPIOA   
#define             FLASH_SPI_SCK_PIN                         GPIO_Pin_5#define             FLASH_SPI_MOSI_PORT                        GPIOA 
#define             FLASH_SPI_MOSI_PIN                         GPIO_Pin_7#define             FLASH_SPI_MISO_PORT                        GPIOA 
#define             FLASH_SPI_MISO_PIN                         GPIO_Pin_6#if (USE_BD ==1)#define             FLASH_SPI_GPIO_CLK                        RCC_APB2Periph_GPIOA#define             FLASH_SPI_CS_PORT                        GPIOA #define             FLASH_SPI_CS_PIN                         GPIO_Pin_4
#else#define             FLASH_SPI_GPIO_CLK                        (RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC)#define             FLASH_SPI_CS_PORT                        GPIOC#define             FLASH_SPI_CS_PIN                         GPIO_Pin_0
#endif

SPI命令

#define DUMMY 						0x00	
#define READ_JEDEC_ID    			 0x9f																					
#define ERASE_SECTOR			0x20	
#define READ_STATUS				0x05
#define READ_DATA				0x03		
#define WRITE_ENABLE   		   0x06																					
#define WRITE_DATA				0x02	

flash驱动代码

初始化代码(配置端口)

在这里插入图片描述

/*** @brief  SPII/O配置* @param  无* @retval 无*/
static void SPI_GPIO_Config(void)
{GPIO_InitTypeDef  GPIO_InitStructure; /* 使能与SPI 有关的时钟 */FLASH_SPI_APBxClock_FUN ( FLASH_SPI_CLK, ENABLE );FLASH_SPI_GPIO_APBxClock_FUN ( FLASH_SPI_GPIO_CLK, ENABLE );/* MISO MOSI SCK*/GPIO_InitStructure.GPIO_Pin = FLASH_SPI_SCK_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	       GPIO_Init(FLASH_SPI_SCK_PORT, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = FLASH_SPI_MOSI_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	       GPIO_Init(FLASH_SPI_MOSI_PORT, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = FLASH_SPI_MISO_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;	       GPIO_Init(FLASH_SPI_MISO_PORT, &GPIO_InitStructure);//初始化CS引脚,使用软件控制,所以直接设置成推挽输出	GPIO_InitStructure.GPIO_Pin = FLASH_SPI_CS_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;	       GPIO_Init(FLASH_SPI_CS_PORT, &GPIO_InitStructure);FLASH_SPI_CS_HIGH;
}

配置SPI模式代码

static void SPI_Mode_Config(void)
{SPI_InitTypeDef  SPI_InitStructure; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2 ;//SPI 使用模式3SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge ;SPI_InitStructure.SPI_CPOL = SPI_CPOL_High ;SPI_InitStructure.SPI_CRCPolynomial = 0;//不使用CRC功能,数值随便写SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex ;//双线全双工SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB  ;SPI_InitStructure.SPI_Mode = SPI_Mode_Master  ;SPI_InitStructure.SPI_NSS = SPI_NSS_Soft  ;	SPI_Init(FLASH_SPIx,&SPI_InitStructure);	//写入配置到寄存器SPI_Cmd(FLASH_SPIx,ENABLE);//使能SPI}
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge ;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High ;

在这里插入图片描述

这段代码设置了 SPI 的时钟相位(Clock Phase),具体来说,SPI_CPHA_2Edge 表示在第二个时钟沿(第二个边沿)采样数据。让我们分解这个设置:

  • SPI_CPHA 是 SPI_InitTypeDef 结构体中的一个成员,用于配置 SPI 的时钟相位。
  • SPI_CPHA_2Edge 是一个预定义的常量,它表示在第二个时钟沿(2Edge)采样数据。

时钟相位(Clock Phase)决定了在时钟的哪个边沿数据应该被采样或变更。在 SPI 通信中,时钟相位通常有两个选项:第一个时钟沿(1Edge)和第二个时钟沿(2Edge)。

  • 当设置为 SPI_CPHA_1Edge 时,数据在第一个时钟沿(上升沿或下降沿)被采样或变更。
  • 当设置为 SPI_CPHA_2Edge 时,数据在第二个时钟沿被采样或变更。

在这个代码片段中,通过设置 SPI_CPHASPI_CPHA_2Edge,表明数据在第二个时钟沿被采样。这样的设置通常取决于与 SPI 设备通信的具体协议和要求。

综合一下这段代码是下降沿采样

SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB  ;

这段代码设置了 SPI 数据传输的起始位。具体来说,SPI_FirstBit_MSB 表示数据传输的起始位是最高有效位(Most Significant Bit,MSB)。

在 SPI 数据传输中,每个字节都由多个位组成,通常是8位。字节中的最高有效位是二进制表示中的最左边的位,而最低有效位则是最右边的位。

通过设置 SPI_FirstBitSPI_FirstBit_MSB,代码指定了数据传输时先传输最高有效位,然后依次传输剩余的位。这通常符合大多数 SPI 设备和通信协议的约定,但在某些情况下,可能需要根据具体设备的要求进行调整。

发送并接受一个字节

static  uint32_t SPI_TIMEOUT_UserCallback(uint8_t errorCode)
{/* Block communication and all processes */FLASH_ERROR("SPI 等待超时!errorCode = %d",errorCode);return 0;
}
uint8_t SPI_FLASH_Send_Byte(uint8_t data)
{SPITimeout = SPIT_FLAG_TIMEOUT;//检查并等待至TX缓冲区为空while(SPI_I2S_GetFlagStatus(FLASH_SPIx,SPI_I2S_FLAG_TXE) == RESET){if((SPITimeout--) == 0) return SPI_TIMEOUT_UserCallback(0);}//程序执行到此处,TX缓冲区已空SPI_I2S_SendData (FLASH_SPIx,data);SPITimeout = SPIT_FLAG_TIMEOUT;//检查并等待至RX缓冲区为非空while(SPI_I2S_GetFlagStatus(FLASH_SPIx,SPI_I2S_FLAG_RXNE) == RESET){if((SPITimeout--) == 0) return SPI_TIMEOUT_UserCallback(0);}	//程序执行到此处,说明数据发送完毕,并接收到一字字节	return SPI_I2S_ReceiveData(FLASH_SPIx); //返回的数据是他排出的}

这段代码涉及 SPI 数据的发送和接收,以下是代码的主要步骤解释:

  1. 发送数据:

    SPI_I2S_SendData(FLASH_SPIx, data);
    

    通过调用 SPI_I2S_SendData 函数,将数据 data 发送到 SPI 设备。

  2. 等待接收缓冲区非空:

    SPITimeout = SPIT_FLAG_TIMEOUT;
    while(SPI_I2S_GetFlagStatus(FLASH_SPIx, SPI_I2S_FLAG_RXNE) == RESET)
    {if((SPITimeout--) == 0) return SPI_TIMEOUT_UserCallback(0);
    }
    

    这部分代码在一个循环中检查 SPI 接收缓冲区是否为非空(SPI_I2S_FLAG_RXNE 表示接收缓冲区非空)。循环会一直等待,直到接收缓冲区有数据或超时。

  3. 接收数据:

    return SPI_I2S_ReceiveData(FLASH_SPIx);
    

    一旦接收缓冲区非空,就调用 SPI_I2S_ReceiveData 函数从 SPI 设备接收数据,并将其返回。

通过 SPI 发送数据,然后等待接收缓冲区非空,最后从接收缓冲区中读取数据。在这个过程中,使用了超时机制来处理可能的等待超时情况。这样的代码结构常见于需要同步发送和接收数据的 SPI 通信场景。

读取字节

uint8_t SPI_FLASH_Read_Byte(void)
{return SPI_FLASH_Send_Byte(DUMMY); 
}

DUMMY可以是任意值,一般是0x00或0xFF,都出来后flash就没有这个数据了(实验得出)

读取ID号

//读取ID号
uint32_t SPI_Read_ID(void)
{uint32_t flash_id;//片选使能FLASH_SPI_CS_LOW;SPI_FLASH_Send_Byte(READ_JEDEC_ID);flash_id = SPI_FLASH_Send_Byte(DUMMY);flash_id <<= 8;flash_id |= SPI_FLASH_Send_Byte(DUMMY); flash_id <<= 8;flash_id |= SPI_FLASH_Send_Byte(DUMMY); FLASH_SPI_CS_HIGH;	return flash_id;
}

在这里插入图片描述

这段代码实现了通过 SPI 读取设备的 ID 号。以下是代码的主要步骤解释:

  1. 片选使能:

    FLASH_SPI_CS_LOW;
    

    通过将片选信号拉低,使能 SPI 设备。

  2. 发送读取 JEDEC ID 的命令:

    SPI_FLASH_Send_Byte(READ_JEDEC_ID);
    

    通过调用 SPI_FLASH_Send_Byte 函数发送读取 JEDEC ID 的命令。

  3. 读取 ID 号的三个字节:

    flash_id = SPI_FLASH_Send_Byte(DUMMY);
    flash_id <<= 8;
    flash_id |= SPI_FLASH_Send_Byte(DUMMY);
    flash_id <<= 8;
    flash_id |= SPI_FLASH_Send_Byte(DUMMY);
    

    通过调用 SPI_FLASH_Send_Byte 函数,依次读取三个字节的 ID 号。每次读取一个字节,然后将其左移相应的位数,最终组成一个 32 位的 ID 号。

  4. 片选失能:

    FLASH_SPI_CS_HIGH;
    

    通过将片选信号拉高,失能 SPI 设备。

  5. 返回读取到的 ID 号:

    return flash_id;
    

    将读取到的 32 位 ID 号作为函数的返回值。

这段代码通过 SPI 通信协议与外部设备进行交互,发送读取 JEDEC ID 的命令,接着读取返回的三个字节,最终组成一个完整的 32 位 ID 号。这样的操作通常用于识别连接的外部设备或验证设备的身份。

FLASH写入使能

在这里插入图片描述

void SPI_Write_Enable(void)
{//片选使能FLASH_SPI_CS_LOW;//拉低代表被选中SPI_FLASH_Send_Byte(WRITE_ENABLE);//写入赋能命令	 FLASH_SPI_CS_HIGH;//表示操作完毕	
}

在 SPI (Serial Peripheral Interface) 通信中,CS 通常指的是 Chip Select(芯片选择)信号。Chip Select 是一种用于选择特定从设备的信号,它告诉 SPI 总线上的从设备何时应该响应主设备的通信。

等待FLASH内部时序操作完成

void SPI_WaitForWriteEnd(void)
{uint8_t status_reg = 0;//片选使能FLASH_SPI_CS_LOW;SPI_FLASH_Send_Byte(READ_STATUS);//读取状态命令do{	status_reg = SPI_FLASH_Send_Byte(DUMMY);//获得Flash上寄存器的数据}while((status_reg & 0x01) == 1);FLASH_SPI_CS_HIGH;	
}

擦除FLASH指定扇区

void SPI_Erase_Sector(uint32_t addr)
{	SPI_Write_Enable();//片选使能FLASH_SPI_CS_LOW;SPI_FLASH_Send_Byte(ERASE_SECTOR);SPI_FLASH_Send_Byte((addr>>16)&0xff);SPI_FLASH_Send_Byte((addr>>8)&0xff); SPI_FLASH_Send_Byte(addr&0xff); FLASH_SPI_CS_HIGH;	SPI_WaitForWriteEnd();}
SPI_FLASH_Send_Byte(ERASE_SECTOR);

写入擦除命令。

	SPI_FLASH_Send_Byte((addr>>16)&0xff);SPI_FLASH_Send_Byte((addr>>8)&0xff); SPI_FLASH_Send_Byte(addr&0xff); 

地址由三个字节组成所以用这种方法。

读取和写

//读取FLASH的内容
void SPI_Read_Data(uint32_t addr,uint8_t *readBuff,uint32_t numByteToRead)
{//片选使能FLASH_SPI_CS_LOW;SPI_FLASH_Send_Byte(READ_DATA);SPI_FLASH_Send_Byte((addr>>16)&0xff);SPI_FLASH_Send_Byte((addr>>8)&0xff); SPI_FLASH_Send_Byte(addr&0xff); while(numByteToRead--){//这段代码是为了激活时钟信号*readBuff = SPI_FLASH_Send_Byte(DUMMY);readBuff++;}FLASH_SPI_CS_HIGH;	}//向FLASH写入内容
//读取FLASH的内容
//写入数据前都要擦除
void SPI_Write_Data(uint32_t addr,uint8_t *writeBuff,uint32_t numByteToWrite)
{SPI_Write_Enable();//片选使能FLASH_SPI_CS_LOW;SPI_FLASH_Send_Byte(WRITE_DATA);SPI_FLASH_Send_Byte((addr>>16)&0xff);SPI_FLASH_Send_Byte((addr>>8)&0xff); SPI_FLASH_Send_Byte(addr&0xff); while(numByteToWrite--){	SPI_FLASH_Send_Byte(*writeBuff);writeBuff++;}FLASH_SPI_CS_HIGH;	SPI_WaitForWriteEnd();
}

写入数据前都要擦除!

写入数据前都要擦除!

写入数据前都要擦除!

因为SPI中数据默认为0xFF,需要自己去擦除,不会在写入时自动擦除!
取FLASH的内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/248322.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

纯html+js+css个人博客

首页 <!DOCTYPE HTML> <html> <head> <title>博客</title> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <meta name"viewport" content"widthdevice-width, initial-sca…

LLM之RAG实战(二十一)| 使用LlamaIndex的Text2SQL和RAG的功能分析产品评论

亚马逊和沃尔玛等电子商务平台上每天都有大量的产品评论&#xff0c;这些评论是反映消费者对产品情绪的关键接触点。但是&#xff0c;企业如何从庞大的数据库获得有意义的见解&#xff1f; 我们可以使用LlamaIndex将SQL与RAG&#xff08;Retrieval Augmented Generation&#x…

基于链表实现贪吃蛇游戏

本文中&#xff0c;我们将使用链表和一些Win32 API的知识来实现贪吃蛇小游戏 一、功能 &#xff08;1&#xff09;游戏载入界面 &#xff08;2&#xff09;地图的绘制 &#xff08;3&#xff09;蛇身的移动和变长 &#xff08;4&#xff09;食物的生成 &#xff08;5&…

2024-01-25 力扣高频SQL50题目1193每月交易

1.1193每月交易 1 count可以这样用。。 COUNT(IF(state approved, 1, NULL)) AS approved_count 如果 COUNT(if(state approved,1,0))&#xff0c;这里变成0&#xff0c;就不对了。因为count计数时候&#xff0c;只要里面不是null&#xff0c;就会算进去。 sum(if(state …

CMake 完整入门教程(一)

1 前言 每一次学习新东西都是很有乐趣的&#xff0c;虽然刚开始会花费时间用来学习&#xff0c;但是实践证明&#xff0c;虽然学习新东西可能会花费一些时间&#xff0c;但是它们带来的好处会远远超过这些花费的时间。学习新东西是值得的&#xff0c;也是很有乐趣的。 网络上…

【数据库】聊聊explain如何优化sql以及索引最佳实践

在实际的开发中&#xff0c;我们难免会遇到一些SQL优化的场景&#xff0c;虽然之前也看过周阳的课程&#xff0c;但是一直没有进行细心的整理&#xff0c;所以本篇会进行详细列举explain的相关使用&#xff0c;以及常见的索引最佳实践&#xff0c;并通过案例进行讲解。 数据准…

数学公式OCR识别php 对接mathpix api 使用公式编译器

数学公式OCR识别php 对接mathpix api 一、注册账号官网网址&#xff1a;https://mathpix.com 二、该产品支持多端使用注意说明&#xff08;每月10次&#xff09; 三、api 对接第一步创建create keyphp对接api这里先封装两个请求函数&#xff0c;get 和post &#xff0c;通过官方…

短视频与小程序:如何实现完美结合?

在短视频日益成为人们娱乐、社交和信息获取的重要渠道的今天&#xff0c;如何在短视频平台进行小程序推广成为了许多企业和品牌关注的焦点。本文将介绍如何利用短视频平台进行小程序推广&#xff0c;提升品牌曝光和用户互动。 首先&#xff0c;打开乔拓云-门店系统的后台&#…

ArcGIS Pro如何新建字段

无论是地图制作还是数据分析&#xff0c;字段的操作是必不可少的&#xff0c;在某些时候现有的字段不能满足需求还需要新建字段&#xff0c;这里为大家讲解一下在ArcGIS Pro中怎么新建字段&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载的水…

Dragons

题目链接&#xff1a; Problem - 230A - Codeforces 解题思路&#xff1a; 用结构体排序就好&#xff0c;从最小的开始比较&#xff0c;大于就加上奖励&#xff0c;小于输出NO 下面是c代码&#xff1a; #include<iostream> #include<algorithm> using namespac…

JDBC学习笔记

一.什么是JDBC 我们操作数据库是用sql语句&#xff0c;那么怎么编写程序来操作数据库呢&#xff1f;这就要学习JDBC。 JDBC就是使用Java中操作关系型数据库的一套API。全称&#xff1a;( Java DataBase Connectivity ) Java 数据库连接。 JDBC更准确的来说是一套接口/API&…

05 Redis之Benchmark+简单动态字符串SDS+集合的底层实现

3.8 Benchmark Redis安装完毕后会自动安装一个redis-benchmark测试工具&#xff0c;其是一个压力测试工具&#xff0c;用于测试 Redis 的性能。 src目录下可找到该工具 通过 redis-benchmark –help 命令可以查看到其用法 3.8.1 测试1 3.9 简单动态字符串SDS 无论是 Redis …

【vue】vue.config.js里面获取本机ip:

文章目录 一、效果&#xff1a;二、实现&#xff1a; 一、效果&#xff1a; 二、实现&#xff1a; const os require(os);function getLocalIpAddress() {const interfaces os.networkInterfaces();for (let key in interfaces) {const iface interfaces[key];for (let i …

MySQL安全(一)权限系统

一、授权 1、创建用户 在MySQL中&#xff0c;管理员可以通过以下命令创建用户&#xff1a; namelocalhost IDENTIFIED BY password; name是要创建的用户名&#xff0c;localhost表示该用户只能从本地连接到MySQL&#xff0c;password是该用户的密码。如果要允许该用户从任何…

142. 环形链表 II(力扣LeetCode)

文章目录 142. 环形链表 II题目描述解题思路判断链表是否有环如果有环&#xff0c;如何找到这个环的入口 c代码 142. 环形链表 II 题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个…

【学网攻】 第(9)节 -- 路由器使用以及原理

系列文章目录 目录 系列文章目录 文章目录 前言 一、路由器是什么&#xff1f; 二、实验 1.引入 总结 文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 -- 交换机配置聚合端口【学网攻】 第(4)节 -- 交换机划分Vlan…

MySQL行格式原理深度解析

MySQL中的行格式&#xff08;Row Format&#xff09;是指存储在数据库表中的数据的物理格式。它决定了数据是如何在磁盘上存储的&#xff0c;以及如何在查询时被读取和解析的。MySQL支持多种行格式&#xff0c;每种格式都有其特定的优点和适用场景。 提升编程效率的利器: 解析…

05-TiDB 之 HTAP 快速上手

混合型在线事务与在线分析处理 (Hybrid Transactional and Analytical Processing, HTAP) 功能 HTAP 存储引擎&#xff1a;行存 与列存 同时存在&#xff0c;自动同步&#xff0c;保持强一致性。行存 OLTP &#xff0c;列存 OLAPHTAP 数据一致性&#xff1a;作为一个分布式事务…

AWS免费套餐——云存储S3详解

文章目录 前言一、为什么选择S3二、费用估算三、创建S3云存储注册账户登录账户创建存储桶关于官网相关文档 总结 前言 不论个人还是企业&#xff0c;日常开发中经常碰到需要将文档、安装包、日志等文件数据存储到服务器的需求。往常最常用的是云服务器&#xff0c;但是仅仅承担…

前端怎么监听手机键盘是否弹起

摘要&#xff1a; 开发移动端中&#xff0c;经常会遇到一些交互需要通过判断手机键盘是否被唤起来做的&#xff0c;说到判断手机键盘弹起和收起&#xff0c;应该都知道&#xff0c;安卓和ios判断手机键盘是否弹起的写法是有所不同的&#xff0c;下面讨论总结一下两端的区别以及…