人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

  • FaceNet的简介
  • Facenet的实现思路
  • 训练部分

在这里插入图片描述

FaceNet的简介

在这里插入图片描述

Facenet的实现思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import torch.nn as nndef conv_bn(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.ReLU6())def conv_dw(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.ReLU6(),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.ReLU6(),)class MobileNetV1(nn.Module):def __init__(self):super(MobileNetV1, self).__init__()self.stage1 = nn.Sequential(# 160,160,3 -> 80,80,32conv_bn(3, 32, 2), # 80,80,32 -> 80,80,64conv_dw(32, 64, 1), # 80,80,64 -> 40,40,128conv_dw(64, 128, 2),conv_dw(128, 128, 1),# 40,40,128 -> 20,20,256conv_dw(128, 256, 2),conv_dw(256, 256, 1),)self.stage2 = nn.Sequential(# 20,20,256 -> 10,10,512conv_dw(256, 512, 2),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),)self.stage3 = nn.Sequential(# 10,10,512 -> 5,5,1024conv_dw(512, 1024, 2),conv_dw(1024, 1024, 1),)self.avg = nn.AdaptiveAvgPool2d((1,1))self.fc = nn.Linear(1024, 1000)def forward(self, x):x = self.stage1(x)x = self.stage2(x)x = self.stage3(x)x = self.avg(x)# x = self.model(x)x = x.view(-1, 1024)x = self.fc(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):  super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述
在pytorch代码中,只需要一行就可以实现l2标准化的层。
在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

训练部分

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/248764.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty源码二:服务端创建NioEventLoopGroup

示例 还是拿之前启动源码的示例,来分析NioEventLoopGroup源码 NioEventLoopGroup构造函数 这里能看到会调到父类的MultiThread EventLoopGroup的构造方法 MultiThreadEventLoopGroup 这里我们能看到,如果传入的线程数目为0,那么就会设置2倍…

JDBC 结构优化2

JDBC 结构优化2 文章目录 JDBC 结构优化2结构优化2 - ATM系统(存,取,转,查)1 Service2 事务3 ThreadLocal4 事务的封装 结构优化2 - ATM系统(存,取,转,查) 1 Service 什么是业务? 代表用户完成的一个业务功能,可以由一个或多个DAO的调用组成。软件所提供的一个功…

[NCTF2019]Fake XML cookbook(特详解)

先试了一下弱口令,哈哈习惯了 查看页面源码发现xml function doLogin(){var username $("#username").val();var password $("#password").val();if(username "" || password ""){alert("Please enter the usern…

数据据库八之 视图、触发器、事务

【零】准备数据 【1】创建表 (1)部门表 d_id是部门的编号d_name是部门的名字 # 确保表不存在 drop table if exists department; # 创建表 create table department( d_id int auto_increment primary key, d_name varchar(6) )auto_increment 501 …

腾讯云部署vue+node项目

文章目录 一、安装宝塔二、vue项目部署三、node项目部署 前言: 关于项目部署,一开始也是找了很多资料,费了点时间,所以记录一下。希望能对各位有所帮助。 一、安装宝塔 1.首先在控制台,进入云服务器的终端界面 2.输入命令和密码获取权限,并且安装宝塔界面 yum install -y w…

如何把png改成jpg格式?分享5个好用的方法!

你是否经常遇到需要将PNG格式的图片转换成JPG格式的情况?无论是因为工作需要,还是为了适应不同的平台和设备,格式转换都是我们经常要面对的问题。那么,如何快速、简单地完成这个任务呢?今天,我们就来为你揭…

计算机网络——IP协议

前言 网络层的主要负责地址分配和路由选择,ip负责在网络中进行数据包的路由和传输。 IPv4报文组成(了解) IPv4首部:IPv4首部包含了用于路由和传输数据的控制信息,其长度为20个字节(固定长度)。 版本&#…

图灵之旅--ArrayList顺序表LinkedList链表栈Stack队列Queue

目录 线性表顺序表ArrayList简介ArrayList使用ArrayList的构造ArrayList常见操作ArrayList的遍历ArrayList的扩容机制利用ArrayList洗牌ArrayList的优缺点 链表链表的实现双向链表的实现 LinkedListLinkedList引入LinkedList的使用LinkedList的构造LinkedList的常用方法介绍Lin…

Power ModeII 插件的下载与使用-----idea

下载 Marketplace里面搜索下载即可 使用 下载后重启软件就可以用了 下面是一些关于Power ModeII ,我的个性化设置截图 以及相关设置解释 插件或扩展的设置面板【用于给代码编辑器或集成开发环境(IDE)添加视觉效果】 主要设置 ENTER POWE…

Maven安装,学习笔记,详细整理maven的一些配置

Maven 1. 初识Maven 2. Maven概述 Maven模型介绍 Maven仓库介绍 Maven安装与配置 3. IDEA集成Maven 4. 依赖管理 01. Maven课程介绍 1.1 课程安排 学习完前端Web开发技术后,我们即将开始学习后端Web开发技术。做为一名Java开发工程师,后端 Web开发技术…

STM32——USART

一、通信 1.1通信是什么; 通信是将一个设备的数据发送到另一个设备中,从而实现硬件的扩展; 1.2通信的目的是什么; 实现硬件的扩展-在STM32中集成了很多功能,例如PWM输出,AD采集,定时器等&am…

数据结构和算法笔记5:堆和优先队列

今天来讲一下堆,在网上看到一个很好的文章,不过它实现堆是用Golang写的,我这里打算用C实现一下: Golang: Heap data structure 1. 基本概念 满二叉树(二叉树每层节点都是满的): 完全二叉树&a…

STM32标准库——(5)EXTI外部中断

1.中断系统 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行 中断优先级&#xff…

【QT+QGIS跨平台编译】之十一:【libzip+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、libzip介绍二、文件下载三、文件分析四、pro文件五、编译实践一、libzip介绍 libzip是一个开源C库,用于读取,创建和修改zip文件。 libzip可以从数据缓冲区,文件或直接从其他zip归档文件直接复制的压缩数据中添加文件。在不关闭存档的情况下所做的更改可以还原…

uniapp微信小程序-input默认字的样式

需要的是这样的 问题 正常是在input框上面写样式就行&#xff0c;但是uniapp不起作用 解决 直接在input上写placeholder-style"color就解决了 <input class"findInput" type"text" placeholder"关键词查询"placeholder-style"co…

Phoncent博客,探索Rie Kudan的GPT创作之举

近日&#xff0c;大家都在谈论日本作家Rie Kudan&#xff0c;她凭借其小说《东京共鸣塔》&#xff08;"Tokyo-to Dojo-to"&#xff09;荣获了日本极具声望的芥川奖。这本小说引起了广泛的讨论和思考&#xff0c;因为令人惊讶的是&#xff0c;Kudan在其中直接引用了人…

2023美赛A题之Lotka-Volterra【完整思路+代码】

这是2023年的成功&#xff0c;考虑到曾经付费用户的负责&#xff0c;2024年可以发出来了。去年我辅导队伍数量&#xff1a;15&#xff0c;获奖M为主&#xff0c;个别F&#xff0c;H&#xff0c;零S。言归正传&#xff0c;这里我开始分享去年的方案。由于时间久远&#xff0c;我…

【华为 ICT HCIA eNSP 习题汇总】——题目集9

1、缺省情况下&#xff0c;广播网络上 OSPF 协议 Hello 报文发送的周期和无效周期分别为&#xff08;&#xff09;。 A、10s&#xff0c;40s B、40s&#xff0c;10s C、30s&#xff0c;20s D、20s&#xff0c;30s 考点&#xff1a;①路由技术原理 ②OSPF 解析&#xff1a;&…

【ArcGIS微课1000例】0099:土地利用变化分析

本实验讲述在ArcGIS软件中基于两期土地利用数据,做土地利用变化分析。 文章目录 一、实验描述二、实验过程三、注意事项一、实验描述 对城市土地利用情况进行分析时,需要考虑不同时期土地利用图层在空间上的差异性,如农用地转建筑用地的空间变化。而该变化过程表现为各时期…

【LeetCode】排序精选12题

目录 排序&#xff1a; 1. 合并区间&#xff08;中等&#xff09; 2. 数组的相对排序&#xff08;简单&#xff09; 快速排序&#xff1a; 1. 颜色分类&#xff08;中等&#xff09; 2. 排序数组&#xff08;中等&#xff09; 3. 数组中的第K个最大元素&#xff08;中等…