深度学习与神经网络pytorch版 2.3 线性代数

深度学习与神经网络pytorch版 2.3 线性代数

目录

深度学习与神经网络pytorch版 2.3 线性代数

1. 简介

2. 线性代数

2.3.1 标量

​编辑2.3.2 向量

2.3.3 矩阵

2.3.4 张量及其性质

2.3.5 降维

2.3.6 非降维求和

2.3.7 点积

2.3.8 矩阵-向量积

2.3.9 矩阵-矩阵乘法

2.3.10 范数

3. 小结

1. 简介

  深度学习与线性代数之间有着密切的联系。线性代数是深度学习算法中用于表达和处理数据的数学工具之一,尤其是在构建神经网络和处理多维数据时。

线性代数中的基本概念包括向量、矩阵和线性变换等,这些概念在深度学习中有着广泛的应用。例如,在神经网络的训练过程中,权重和偏差可以看作是矩阵和向量,它们通过线性变换来改变输入数据的特征,从而实现分类或回归等任务。

此外,线性代数中的范数也是深度学习中常用的概念。范数可以用来衡量向量的大小,对于限制模型复杂度和提升模型的泛化能力具有重要作用。在深度学习中,范数通常用于正则化、优化算法等。

最后,特征值分解是线性代数中的另一个重要概念,它在深度学习中用于将矩阵分解成一组特征向量和特征值。特征值分解可以帮助我们了解数据的内在结构和关系,例如在降维、数据可视化等方面有着广泛的应用。

综上所述,线性代数在深度学习中扮演着重要的角色,它为深度学习提供了数学基础和工具,使得我们能够更好地理解和处理复杂的数据结构和模式。

2. 线性代数

2.3.1 标量

# 2.3.1 标量
# 导入PyTorch库。PyTorch是一个开源的深度学习库,提供了张量计算等功能。  
import torch
# 打印字符串'2.3.1 标量'到控制台。  
print('2.3.1 标量')
# 使用torch.tensor()函数创建一个标量张量x1,其值为4.0。  
x1 = torch.tensor(4.0)
# 使用torch.tensor()函数创建另一个标量张量y1,其值为3.0。  
y1 = torch.tensor(3.0)
# 打印x1和y1的和。由于x1和y1都是标量,所以直接相加即可。  
print(x1 + y1)
# 打印x1和y1的乘积。  
print(x1 * y1)
# 打印x1除以y1的结果。 
print(x1 / y1)
# 打印x1的y1次幂。 
print(x1 ** y1)

2.3.2 向量


# 2.3.2 向量
import torch
print('2.3.2 向量')
x2 = torch.arange(6)
print(x2)
print(x2[4]) # 可以通过x[i]来引用第个i个元素(从0开始)
print(len(x2)) # 通过len()函数来访问长度
print(x2.shape) # 通过.shape属性访问向量的长度

2.3.3 矩阵

# 2.3.3 矩阵
import torch
print('2.3.3 矩阵')
A = torch.arange(20).reshape(5,4)
print(A)
W = A.T # 交换矩阵的行和列时,结果称为矩阵的转置(transpose)
print(W)
B = torch.tensor([[1,2,3],[2,0,4],[3,4,5]])
print(B)
E = B == B.T # 对称矩阵(symmetric matrix)
print(E)

2.3.4 张量及其性质

# 2.3.4 张量及其性质
import torch
print('2.3.4 张量')
X3 = torch.arange(24).reshape(2,3,4)
print(X3)
A = torch.arange(20,dtype=torch.float32).reshape(5,4)
B = A.clone() # 重新分配内存,将A复制给B
print(A)
print(A + B)
print(A * B)
# 将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘
a = 3
X4 = torch.arange(24).reshape(2,3,4)
print(a + X4)
print((a * X4).shape)

2.3.5 降维

# 2.3.5 降维import torch 
print('2.3.5 降维')
# 创建一个从0到3的浮点数张量,总共有4个元素。  
x = torch.arange(4, dtype=torch.float32)
print(x)  # 输出: tensor([0., 1., 2., 3.])  
print(x.sum())  # 输出: 6.0,求和结果为1+2+3=6  # 创建一个20元素的浮点数张量,并将其重新塑形为一个5x4的二维张量。  
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)print(A.shape)  # 输出: tensor([5, 4]),表示张量A有5行和4列。  
print(A.sum())  # 输出: 120.0,求和结果为0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=120  
# 对A的每一列求和,结果为一个包含5个元素的张量。  
A_sum_axis0 = A.sum(axis=0)
print(A_sum_axis0)  # 输出: tensor([30., 35., 40., 45., 50.])  
print(A_sum_axis0.shape)  # 输出: tensor([5]),表示每个元素都是一个独立的张量。  # 对A的每一行求和,结果为一个包含4个元素的张量。  
A_sum_axis1 = A.sum(axis=1)
print(A_sum_axis1)  # 输出: tensor([ 6.,  6.,  6.,  6.,  6.])  
print(A_sum_axis1.shape)  # 输出: tensor([5]),表示每个元素都是一个独立的张量。  # 同时对A的行和列求和。结果为一个单一的数值。  
print(A.sum(axis=[0, 1]))  # 输出: 600.0,求和结果为(0+4+8+12+16)+(1+5+9+13+17)+(2+6+10+14+18)+(3+7+11+15+19)=600  
print(A.mean())  # 输出: tensor(6.),计算所有元素的平均值。  
print(A.sum() / A.numel())  # 输出: tensor(6.),计算所有元素的平均值。通过总和除以元素总数得到。  
print(A.mean(axis=0),A.sum(axis=0) / A.shape[0])  # 输出: tensor([6., 7., 8., 9.]) 和 tensor([7., 7., 7., 7.])。分别计算每列和每行的平均值。

2.3.6 非降维求和

# 2.3.6 非降维求和
print('2.3.6 非降维求和')
import torch
A = torch.arange(20,dtype=torch.float32).reshape(5,4)
sum_A = A.sum(axis=1, keepdims=True)
print(sum_A)
print(A / sum_A) #由于sum_A在对每行进行求和后仍保持两个轴,我们可以通过广播将A除以sum_A。
print(A.cumsum(axis=0))

2.3.7 点积

# 2.3.7 点积
import torch
print('2.3.7 点积')
x = torch.arange(4, dtype=torch.float32)y = torch.ones(4, dtype = torch.float32)
print(x)
print(y)
print(torch.dot(x, y))

2.3.8 矩阵-向量积

# 2.3.8. 矩阵-向量积import torch
print('2.3.8. 矩阵-向量积')
A = torch.arange(20,dtype=torch.float32).reshape(5,4)
x = torch.arange(4, dtype=torch.float32)print(A.shape)
print(x.shape)
print(torch.mv(A, x))

2.3.9 矩阵-矩阵乘法

# 2.3.9. 矩阵-矩阵乘法
import torch
print('2.3.9. 矩阵-矩阵乘法')
A = torch.arange(20,dtype=torch.float32).reshape(5,4)
B = torch.ones(4, 3)
print(torch.mm(A, B))

2.3.10 范数

# 2.3.10. 范数
import torch
print('2.3.10. 范数')
# 创建一个包含两个浮点数的张量u。  
u = torch.tensor([3.0, -4.0])
print(torch.norm(u))  # 输出: 5.0,计算u的范数(默认使用欧几里得范数)。  # 计算张量u中每个元素的绝对值之和。  
print(torch.abs(u).sum())  # 输出: 7.0,绝对值之和为3+4=7。  # 创建一个形状为(4,9)的全1张量,并计算其范数。  
print(torch.norm(torch.ones((4, 9))))  # 输出: 9.0,计算全1张量的范数(默认使用欧几里得范数)。

3. 小结

  1. 标量、向量、矩阵和张量是线性代数中的基本数学对象。

  2. 向量泛化自标量,矩阵泛化自向量。

  3. 标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴。

  4. 一个张量可以通过summean沿指定的轴降低维度。

  5. 两个矩阵的按元素乘法被称为他们的Hadamard积。它与矩阵乘法不同。

  6. 在深度学习中,我们经常使用范数,如\(L_1\)范数、\(L_2\)范数和Frobenius范数。

  7. 我们可以对标量、向量、矩阵和张量执行各种操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/250558.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识vue3

文章目录 1.Vue3的好处2.create-vue搭建vue3项目3.项目目录和关键文件4.组合式API - setup选项5.组合式API - reactive和ref函数①reactive②ref() 6.组合式API - computed7.组合式API - watch①基础使用 - 侦听单个数据②基础使用 - 侦听多个数据③immediate④精确侦听对象的某…

关于在Tkinter + Pillow图片叠加中出现的问题

这段时间我一直在尝试对多图层图片进行一个叠加的操作,想用tkinter实现出来,先看错误 这里我其实已经选择了图片,但是发现是ValueError,我尝试断点检测但是也无动于衷,因为设置变量检测的时候发现变量并没有错误&…

面试八股文(3)

文章目录 1.HashSet如何检查重复2.comparable和Comparator区别3.ConcurrentHashMap和Hashtable区别4.线程和进程5.并发与并行的区别6.为什么使用多线程7.使用多线程可能带来问题8.线程的生命周期和状态9.什么是上下文切换10.线程死锁11.产生死锁四个条件12.如何避免死锁 1.Hash…

单片机最小系统讲解

一最小系统解释: 面试当中常常问到的,一个题目什么是单片机最小系统? 本质上是问?要能够使单片机能够工作的最小组部分有哪些。 对于单片机而言,要想能够工作,就和人一样我们要有心脏推动我们身体器官的…

Docker基础(持续更新中)

# 第1步,去DockerHub查看nginx镜像仓库及相关信息# 第2步,拉取Nginx镜像 docker pull nginx# 第3步,查看镜像 docker images # 结果如下: REPOSITORY TAG IMAGE ID CREATED SIZE nginx latest 60…

【DDD】学习笔记-代码模型的架构决策

代码模型属于软件架构的一部分,它是设计模型的进化与实现,体现出了代码模块(包)的结构层次。在架构视图中,代码模型甚至会作为其中的一个视图,通过它来展现模块的划分,并定义运行时实体与执行视…

Cmake语法学习3:语法

1.双引号 1.1 命令参数 1)介绍 命令中多个参数之间使用空格进行分隔,而 cmake 会将双引号引起来的内容作为一个整体,当它当成一个参数,假如你的参数中有空格(空格是参数的一部分),那么就可以使…

Python中with管理上下文

上下文管理器 上下文管理器本质就是能够支持with操作。 任何实现了 __enter__() 和 __exit__() 方法的对象都可称之为上下文管理器,上下文管理器对象可以使用 with 关键字。显然,文件(file)对象也实现了上下文管理器协议。 实现…

一文速学-selenium高阶操作连接已存在浏览器

前言 不得不说selenium不仅在自动化测试作为不可或缺的工具,在数据获取方面也是十分好用,能够十分快速的见到效果,这都取决于selenium框架的足够的灵活性,甚至在一些基于web端的自动化办公都十分有效。 通过selenium连接已经存在…

幻兽帕鲁能在Mac上运行吗?幻兽帕鲁Palworld新手攻略

幻兽帕鲁能在Mac上运行吗? 《幻兽帕鲁》目前还未正式登陆Mac平台,不过通过一些方法是可以让游戏在该平台运行的。 虽然游戏不能在最高配置下运行,但如果你安装了CrossOver这个软件,就可以玩了。这是为Mac、Linux和ChromeOS等设计…

oracle19C 密码包含特殊字符@ 导致ORA-12154

oracle 19C 密码包含特殊字符 出现登录失败,针对此问题一次说个明白 ORA-12154: TNS:could not resolve the connect identifier specified Oracle 19c之前密码是可以包含特殊字符,但是如果包含特殊字符需要双引号 比如oracle11g 正常 如果密码包含特殊…

MongoDB从入门到实战之MongoDB快速入门

前言 上一章节主要概述了MongoDB的优劣势、应用场景和发展史。这一章节将快速的概述一下MongoDB的基本概念,带领大家快速入门MongoDB这个文档型的NoSQL数据库。 MongoDB从入门到实战的相关教程 MongoDB从入门到实战之MongoDB简介👉 MongoDB从入门到实战…

大数据本地环境搭建03-Spark搭建

需要提前部署好 Zookeeper/Hadoop/Hive 环境 1 Local模式 1.1 上传压缩包 下载链接 链接:https://pan.baidu.com/s/1rLq39ddxh7np7JKiuRAhDA?pwde20h 提取码:e20h 将spark-3.1.2-bin-hadoop3.2.tar.gz压缩包到node1下的/export/server目录 1.2 解压压…

数据结构——实验01-线性表的链式存储和操作

一、实验内容 二、算法思想与算法实现 1、解题思想 (1)逆序创建链表La就是使用头插法创建一个链表,所谓头插法就是在创建链表时始终将新元素插入到头结点之后,而正序创建链表Lb就是使用尾插法创建一个链表,所谓尾插法…

Pycharm python用matplotlib 3D绘图显示空白解决办法

问题原因: matplotlib版本升级之后显示代码变了,修改为新的 # ax Axes3D(fig) # 原代码 ax fig.add_axes(Axes3D(fig)) # 新代码import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Ax…

五大架构风格之一:数据流风格

数据流风格详细介绍 系统架构数据流风格是一种软件体系结构风格,它强调了系统内部不同部分之间的数据流动。这种风格侧重于描述系统中的数据处理过程,以及数据是如何从一个组件传递到另一个组件的。以下是系统架构数据流风格的详细介绍: 1 基…

Hadoop:HDFS学习巩固——基础习题及编程实战

一 HDFS 选择题 1.对HDFS通信协议的理解错误的是? A.客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的 B.HDFS通信协议都是构建在IoT协议基础之上的 C.名称节点和数据节点之间则使用数据节点协议进行交互 D.客户端通过一…

代码随想录算法训练营29期Day41|LeetCode 343,96

文档讲解:整数拆分 不同的二叉搜索树 343.整数拆分 题目链接:https://leetcode.cn/problems/integer-break/description/ 思路: 题目要求我们拆分n,拆成k个数使其乘积和最大,然而题目中并没有给出k,所以…

影院购票|电影院订票选座小程序|基于微信小程序的电影院购票系统设计与实现(源码+数据库+文档)

电影院订票选座小程序目录 目录 基于微信小程序的电影院购票系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能实现 2、管理员功能实现 (1)影院信息管理 (2)电影信息管理 (3)已…

算法学习——华为机考题库6(HJ36 - HJ40)

算法学习——华为机考题库6(HJ36 - HJ40) HJ36 字符串加密 描述 有一种技巧可以对数据进行加密,它使用一个单词作为它的密匙。下面是它的工作原理:首先,选择一个单词作为密匙,如TRAILBLAZERS。如果单词中…