多元数据直观表示(R语言)

一、实验目的:

       通过上机试验,掌握R语言实施数据预处理及简单统计分析中的一些基本运算技巧与分析方法,进一步加深对R语言简单统计分析与图形展示的理解。

二、实验内容:

bank.csv文件中数据来自1969-1971年美国一家银行的474名职员情况调查。该数据共8个变量,包括:

gender:性别,1代表男性,2代表女性;

educ:受教育年限(单位:年);

jobcat:职位等级,分1,2,3级,1级工作地位最低,3级最高;

salary:当前工资(单位:美元/年);

salbegin:初始工资,指进入银行初始薪酬(单位:美元/年);

jobtime:工作月份,指在银行累计工作时间(单位:月);  

prevexp:以前工作经历,指在其他单位累计工作时间(单位:月);

minority: 是否少数民族,0代表不是,1代表是。

(1)请绘制折线图,展示工资如何随工作时间变化,并对图形进行解读。

(2)请绘制气泡图,展示性别、职位等级与当前工资的关系,并对图形进行解读。

3)(至少有两个分析)自行选择感兴趣的变量与分析目的,利用基本统计分析图形进行直观表示并加以解读。此小题对使用何种图形展示不做严格要求,只需不是折线图及气泡图即可。

三、实验过程与结果:

1)绘制折线图,展示工资如何随工作时间变化,并对图形进行解读:

data<-read.csv("E:/学习资料及作业/2.2多元统计分析R/实验1/bank.csv")datad1<-aggregate(salary~jobtime,data,mean)  #求salary的均值library(ggplot2)ggplot(data=d1,aes(x=jobtime,y=salary))+ # 折线图geom_line(color="green",size=1) #线的颜色、粗细

运行结果:

解读分析:

       从总体上看,工作时间jobtime与工资salary之间不存在线性关系,即使工作时间在小范围内变化,薪资可能波动较大。当工作时间超过90时,总体的薪资会比工作时间小于90的多一点儿,表明工作时间会对薪资有一定的影响,但薪资并不是只由工作时间直接决定的,还存在其他因素对其有影响。

2)绘制气泡图,展示性别、职位等级与当前工资的关系,并对图形进行解读。

d2<-aggregate(x=data$salary,by=list(data$jobcat,data$gender),FUN=mean)d2ggplot(data=d2,aes(x=Group.1, y=Group.2, size=x,col=1)) +geom_point(alpha=0.5) + #调整圆圈透明度scale_size(range = c(1, 10), name="性别、职位等级与当前工资的关系图")+ #图例名称xlab('jobcat') +  # 更改x、y轴名称ylab('gender')

运行结果:

解读分析:

       男性13等级都有分布,女性只有13等级,从男性角度来看,12等级的薪资差别不大,但123等级薪资相差较大,都快相差两倍了;从女性角度来看,等级1与等级3相差巨大。并且男性和女性都为等级1时,男性的薪资与女性的相差较大。

3)自行选择感兴趣的变量与分析目的,利用基本统计分析图形进行直观表示并加以解读。此小题对使用何种图形展示不做严格要求,只需不是折线图及气泡图即可。

分别用箱型图绘制职位等级与受教育年限、职位等级与薪资的关系:

代码:

data$jobcat<-factor(data$jobcat)ggplot(data,aes(x=jobcat,y=educ))+geom_boxplot()+labs(title="职位等级与受教育年限的关系",x="职位等级",y="受教育年限")+theme(plot.title = element_text(hjust=0.5))data$jobcat<-factor(data$jobcat)ggplot(data,aes(x=jobcat,y=salary))+geom_boxplot()+labs(title="职位等级与薪资的关系",x="职位等级",y="薪资")+theme(plot.title = element_text(hjust=0.5))

运行结果:

 

解读分析:

       从均值来看,等级1、2的受教育的年限均值相同,等级3最高,但等级1、2的薪资均值相差不大,等级3的薪资却比等级1、2高得多,从某种程度上可以表明受教育年限越高,其薪资也越高。等级2的薪资较为集中,几乎没什么波动。

受教育年限、以前工作经历与初始工资的关系:

代码:

d3<-aggregate(x=data$salbegin,by=list(data$prevexp,data$educ),FUN=mean)ggplot(data=d3,aes(x=Group.1, y=Group.2, size=x,col=1)) +geom_point(alpha=0.5) + #调整圆圈透明度scale_size(range = c(1, 10), name="受教育年限、以前工作经历与初始工资的关系图")+ #图例名称xlab('prevexp') +  # 更改x、y轴名称ylab('educ')

解读分析:

受教育越高的平均工作时间要比受教育低的少,并且获得的薪酬也相对多一些。

以前的工作经历对初始薪资的影响:

代码:

d4<-aggregate(salbegin~prevexp,data,mean)order<-sort(d4$prevexp,decreasing=T)ggplot(data=d4,aes(prevexp,salbegin))+geom_bar(stat="identity",width=0.8,colour="black",linewidth=0.25,fill="#FC4E07",alpha=1)

运行结果:

解读分析:

        以前的工作经历大多集中在0-120个月,即1-10年,随着工作经历的增加,会出现少数再找工作时,其初始工资很高,但是总体工作经历对其再工作时的初始工资没有什么影响。并且当工作经历达到200个月以上时,再次换工作的人也偏少了,这可能与他们进入中年,追求平稳的生活可能有关。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/25124.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在MacOS上打造本地部署的大模型知识库(一)

一、在MacOS上安装Ollama docker run -d -p 3000:8080 --add-hosthost.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main 最后停掉Docker的ollama&#xff0c;就能在webui中加载llama模…

Fiddler在Windows下抓包Https

文章目录 1.Fiddler Classic 配置2.配置浏览器代理自动代理手动配置浏览器代理 3.抓取移动端 HTTPS 流量&#xff08;可选&#xff09;解决抓取 HTTPS 失败问题1.Fiddler证书过期了 默认情况下&#xff0c;Fiddler 无法直接解密 HTTPS 流量。需要开启 HTTPS 解密&#xff1a; 1…

常用的AI文本大语言模型汇总

AI文本【大语言模型】 1、文心一言https://yiyan.baidu.com/ 2、海螺问问https://hailuoai.com/ 3、通义千问https://tongyi.aliyun.com/qianwen/ 4、KimiChat https://kimi.moonshot.cn/ 5、ChatGPThttps://chatgpt.com/ 6、魔塔GPT https://www.modelscope.cn/studios/iic…

(python)Arrow库使时间处理变得更简单

前言 Arrow库并不是简单的二次开发,而是在datetime的基础上进行了扩展和增强。它通过提供更简洁的API、强大的时区支持、丰富的格式化和解析功能以及人性化的显示,填补了datetime在某些功能上的空白。如果你需要更高效、更人性化的日期时间处理方式,Arrow库是一个不错的选择…

游戏引擎学习第127天

仓库:https://gitee.com/mrxiao_com/2d_game_3 为本周设定阶段 我们目前的渲染器已经实现了令人惊讶的优化&#xff0c;经过过去两周的优化工作后&#xff0c;渲染器在1920x1080分辨率下稳定地运行在60帧每秒。这个结果是意料之外的&#xff0c;因为我们没有预计会达到这样的…

leetcode 73. 矩阵置零

题目如下 数据范围 如果一个点m(i,j) 0其中i j都大于0那么按照题目要求对应的m[0][j] m[i][0]都要赋值为0. 所以我们可以令第一行和第一列作为标记是否对应的列和行需要置为0. 又因为我们没法判断第一行和第一列所以需要额外两个变量标记第一列和第二列。 这样就可以满足题…

deepseek-r1-centos-本地服务器配置方法

参考&#xff1a; 纯小白 Centos 部署DeepSeek指南_centos部署deepseek-CSDN博客 https://blog.csdn.net/xingxin550/article/details/145574080 手把手教大家如何在Centos7系统中安装Deepseek&#xff0c;一文搞定_centos部署deepseek-CSDN博客 https://blog.csdn.net/soso67…

机器学习:强化学习的epsilon贪心算法

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是一种机器学习方法&#xff0c;旨在通过与环境交互&#xff0c;使智能体&#xff08;Agent&#xff09;学习如何采取最优行动&#xff0c;以最大化某种累积奖励。它与监督学习和无监督学习不同&#xff0c;强调试错…

比创达电子科技-EMC干货之防静电技术

EMC干货之防静电技术 什么是静电放电 两个具有不同静电电位的物体&#xff0c;由于直接接触或静电场感应引起两物体间的静电电荷的转移,静电电场的能量达到一定程度后&#xff0c;击穿其间介质而进行放电的现象就是静电放电,简称为ESD(Electro Static Discharge)。 静电产生的原…

JavaWeb-ServletContext应用域接口

文章目录 ServletContext接口简介获取一个ServletContext对象ServletContext接口中的相关方法获取应用域配置参数关于应用域参数的配置要求getContextPath获取项目路径getRealPath获取真实路径log系列方法添加相关日志增删查应用域属性 ServletContext接口简介 ServletContext…

C语言(15)-------------->一维数组

这篇文章介绍的是数组的定义、创建、初始化、使用&#xff0c;在数组中输入内容并输出数组中的内容&#xff0c;并探讨了数组在内存中的存储。里面有些内容建议大家参考下面的一些文章&#xff0c;有助于加深大家对于C语言的理解&#xff1a; C语言&#xff08;2&#xff09;-…

AI学习第六天-python的基础使用-趣味图形

在 Python 编程学习过程中&#xff0c;turtle库是一个非常有趣且实用的工具&#xff0c;它可以帮助我们轻松绘制各种图形。结合for循环、random模块以及自定义方法等知识点&#xff0c;能够创作出丰富多彩的图案。下面就来分享一下相关的学习笔记。 一、基础知识点回顾 &…

线程安全问题

线程安全问题是指在多线程环境下&#xff0c;当多个线程同时访问共享资源时&#xff0c;可能出现的错误或不可预测的行为。以下是对其的理解&#xff1a; 1. 根本原因 线程安全问题的根本原因是多个线程对共享资源的并发访问。如果多个线程对共享资源进行读写操作&#xff0c…

ubuntu终端指令集 shell编程基础(一)

磁盘指令 连接与查看&#xff1a;磁盘与 Ubuntu 有两种连接方式&#xff1b;使用ls /dev/sd*查看是否连接成功&#xff0c;通过df系列指令查看磁盘使用信息。若 U 盘已挂载&#xff0c;相关操作可能失败&#xff0c;需用umount取消挂载。磁盘操作&#xff1a;使用sudo fdisk 磁…

第十四届蓝桥杯Scratch11月stema选拔赛真题——小猫照镜子

编程实现&#xff1a; 小猫照镜子。(背景非源素材) 具体要求&#xff1a; 1). 运行程序&#xff0c;角色、背景如图所示&#xff1b; 完整题目可点击下方链接查看&#xff0c;支持在线编程~ 小猫照镜子_scratch_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/s…

Sublime Text4安装、汉化

-------------2025-02-22可用---------------------- 官方网址下载&#xff1a;https://www.sublimetext.com 打开https://hexed.it 点击打开文件找到软件安装目录下的 ctrlf 查找 8079 0500 0f94 c2右边启用替换替换为:c641 0501 b200 90点击替换按钮 替换完成后 另存为本地…

C++20的指定初始化器(Designated Initializers)

文章目录 指定初始化器的使用条件语法嵌套结构体的初始化数组的指定初始化注意事项优势 C20引入了**指定初始化器&#xff08;Designated Initializers&#xff09;**这一特性&#xff0c;允许在初始化结构体、联合体或类的对象时&#xff0c;明确指定成员变量的初始化值&#…

Redis安装及其AnotherRedisDesktopManagera安装使用

一、Redis安装 1. 下载Redis安装包 通过网盘分享的文件&#xff1a;Redis 链接: https://pan.baidu.com/s/1elAT8mk3EIoYQQ3WoVVoNg?pwd7yrz 提取码: 7yrz 2. 解压Redis安装包 下载完成后&#xff0c;将Redis安装包解压到一个指定的目录&#xff0c;例如&#xff1a;C:\Re…

51c嵌入式~电路~合集13

我自己的原文哦~ https://blog.51cto.com/whaosoft/12317946 一、造成PCB焊接缺陷的原因 电路板孔可焊性不好&#xff0c;将会产生虚焊缺陷&#xff0c;影响电路中元件的参数&#xff0c;导致多层板元器件和内层线导通不稳定&#xff0c;引起整个电路功能失效。 所谓可焊性…

Lindorm作为AI搜索基础设施,助力Kimi智能助手升级搜索体验

Kimi智能助手开启“长文本”时代&#xff0c;K系列强化学习模型持续进化中 2023年10月&#xff0c;月之暗面&#xff08;Moonshot AI&#xff09;旗下的Kimi智能助手&#xff0c;带着支持输入20万汉字的能力正式发布&#xff0c;提升了全球市场上产品化大模型服务支持的上下文输…