(算法竞赛)使用广度优先搜索(BFS)解决迷宫最短路径问题

在这个充满奇思妙想的世界里,每一次探索都像是打开了一扇通往新世界的大门。今天,我们将踏上一段特别的旅程,去揭开那些隐藏在代码、算法、数学谜题或生活智慧背后的秘密。🎉😊

所以,系好安全带,准备好迎接一场充满欢笑和惊喜的冒险吧!我们的故事,现在正式开始……

题目描述

当你站在一个迷宫里的时候,往往会被错综复杂的道路弄得失去方向感,如果你能得到迷宫地图,事情就会变得非常简单。假设你已经得到了一个 n x m 的迷宫的图纸,请你找出从起点到出口的最短路。

输入: 第一行是两个整数 n 和 m (1 ≤ n,m ≤ 100),表示迷宫的行数和列数。 接下来 n 行,每行一个长为 m 的字符串,表示整个迷宫的布局。字符’.‘表示空地,’#'表示墙,'S’表示起点,'T’表示出口。

输出: 输出从起点到出口最少需要走的步数。

样例: 输入:

复制

3 3
S#T
.#.
...

输出:

复制

6

来源: 深搜 递归 广搜

在解决迷宫问题时,尤其是寻找从起点到终点的最短路径时,广度优先搜索(BFS)是一种非常高效且常用的方法。本文将详细解析一个基于 BFS 的 Python 代码,帮助你理解其工作原理和实现细节。

1. 问题背景

迷宫问题是一个经典的路径搜索问题。给定一个二维迷宫,起点为 S,终点为 T,迷宫中包含可通行的格子(用 . 表示)和障碍物(用 # 表示)。目标是找到从起点到终点的最短路径长度。

2. 为什么选择 BFS?

广度优先搜索(BFS)是一种逐层扩展的搜索算法,适用于无权图(迷宫中每个格子的移动代价相同)的最短路径问题。BFS 的核心思想是从起点开始,逐层扩展所有可能的路径,直到找到终点。由于 BFS 按层扩展,最先到达终点的路径一定是最短路径。

3. 代码解析
3.1 输入迷宫数据

Python复制

# 输入网格的行数和列数
n, m = map(int, input().split())
# 输入网格状态
a = [list(input()) for _ in range(n)]
  • 这部分代码首先读取迷宫的行数 n 和列数 m

  • 然后逐行读取迷宫的布局,存储为一个二维字符数组 a。每个格子的值可以是:

    • S:起点。

    • T:终点。

    • .:可通行的格子。

    • #:障碍物。

3.2 定义方向数组

Python复制

# 定义方向数组
dx = [0, 0, 1, -1]  # 行变化(右、左、下、上)
dy = [1, -1, 0, 0]  # 列变化
  • 这两个数组定义了四个可能的移动方向:右、左、下、上。

  • 通过索引 i,可以从 dxdy 中获取对应方向的行和列偏移量。

3.3 找到起点和终点

Python复制

# 找到起点 'S' 和终点 'T' 的位置
start_x, start_y = None, None
end_x, end_y = None, None
for i in range(n):for j in range(m):if a[i][j] == 'S':start_x, start_y = i, jelif a[i][j] == 'T':end_x, end_y = i, j
  • 遍历迷宫,找到起点 S 和终点 T 的坐标。

  • 如果迷宫中不存在起点或终点,程序将无法正常运行,因此需要确保输入的迷宫包含 ST

3.4 初始化访问标记数组

Python复制

# 初始化访问标记数组
vis = [[False] * m for _ in range(n)]
  • 创建一个与迷宫大小相同的二维数组 vis,用于记录每个格子是否被访问过。

  • 初始时,所有格子标记为未访问(False)。

3.5 BFS 函数实现

Python复制

from collections import dequedef bfs(start_x, start_y):queue = deque([(start_x, start_y, 0)])  # 队列中存储 (x, y, 步数)vis[start_x][start_y] = True  # 标记起点为已访问while queue:xx, yy, steps = queue.popleft()  # 当前格子及步数# 如果到达终点,返回步数if xx == end_x and yy == end_y:return steps# 遍历四个方向for i in range(4):x, y = xx + dx[i], yy + dy[i]if 0 <= x < n and 0 <= y < m and not vis[x][y] and a[x][y] != '#':vis[x][y] = True  # 标记为已访问queue.append((x, y, steps + 1))  # 加入队列并步数加1return -1  # 如果没有找到路径,返回 -1
  • 队列初始化:使用 deque 创建一个队列,初始时将起点 (start_x, start_y) 和步数 0 加入队列。

  • 逐层扩展:从队列中取出一个格子 (xx, yy),检查是否到达终点。如果是,则返回当前步数。

  • 扩展相邻格子:对于当前格子的四个相邻格子,检查是否在迷宫范围内、未被访问且不是障碍物。如果是,则标记为已访问,并将其加入队列,步数加1。

  • 回溯:如果队列为空且未找到终点,返回 -1,表示无路径。

3.6 调用 BFS 并输出结果

Python复制

# 从起点开始 BFS
if start_x is not None and end_x is not None:shortest_path = bfs(start_x, start_y)print(shortest_path)
else:print("未找到起点或终点")
  • 调用 bfs 函数,从起点开始搜索。

  • 如果找到最短路径,输出路径长度;否则,输出提示信息。

4. 代码运行逻辑
  1. 初始化:读取迷宫数据,找到起点和终点,初始化访问标记数组。

  2. BFS 搜索

    • 从起点开始,逐层扩展所有可能的路径。

    • 使用队列存储当前层的格子及其步数。

    • 每次从队列中取出一个格子,检查是否到达终点。

    • 如果未到达终点,扩展其相邻格子,并将未访问的格子加入队列。

  3. 终止条件

    • 如果到达终点,返回当前步数。

    • 如果队列为空且未找到终点,返回 -1

5. 输入输出示例
输入:

复制

3 3
S#T
.#.
...
输出:
4
6. BFS 的优势
  • 时间复杂度:BFS 的时间复杂度为 O(n×m),适合迷宫规模较大的情况。

  • 空间复杂度:BFS 的空间复杂度为 O(n×m),主要用于存储访问标记数组和队列。

  • 最短路径保证:BFS 按层扩展,最先到达终点的路径一定是最短路径。

7. 总结

本文通过详细解析基于 BFS 的代码,展示了如何高效地解决迷宫最短路径问题。BFS 的逐层扩展特性使其成为解决此类问题的理想选择。通过合理使用队列和访问标记数组,代码能够高效地找到从起点到终点的最短路径,而不会出现超时问题。

完整代码

from collections import deque# 输入网格的行数和列数
n, m = map(int, input().split())
# 输入网格状态
a = [list(input()) for _ in range(n)]# 定义方向数组
dx = [0, 0, 1, -1]  # 行变化(右、左、下、上)
dy = [1, -1, 0, 0]  # 列变化# 找到起点 'S' 和终点 'T' 的位置
start_x, start_y = None, None
end_x, end_y = None, None
for i in range(n):for j in range(m):if a[i][j] == 'S':start_x, start_y = i, jelif a[i][j] == 'T':end_x, end_y = i, j# 初始化访问标记数组
vis = [[False] * m for _ in range(n)]# BFS 函数
def bfs(start_x, start_y):queue = deque([(start_x, start_y, 0)])  # 队列中存储 (x, y, 步数)vis[start_x][start_y] = True  # 标记起点为已访问while queue:xx, yy, steps = queue.popleft()  # 当前格子及步数# 如果到达终点,返回步数if xx == end_x and yy == end_y:return steps# 遍历四个方向for i in range(4):x, y = xx + dx[i], yy + dy[i]if 0 <= x < n and 0 <= y < m and not vis[x][y] and a[x][y] != '#':vis[x][y] = True  # 标记为已访问queue.append((x, y, steps + 1))  # 加入队列并步数加1return -1  # 如果没有找到路径,返回 -1# 从起点开始 BFS
if start_x is not None and end_x is not None:shortest_path = bfs(start_x, start_y)print(shortest_path)
else:print("未找到起点或终点")

队列知识及其在广度优先搜索(BFS)中的应用

队列(Queue)是一种先进先出(First-In-First-Out,FIFO)的数据结构,广泛应用于算法和程序设计中。理解队列的使用,尤其是它在广度优先搜索(BFS)中的关键作用,对于解决路径搜索问题(如迷宫问题)至关重要。


1. 队列的基本概念

队列是一种线性数据结构,其操作类似于现实生活中的排队场景。队列的主要操作包括:

  • 入队(Enqueue):在队列的尾部添加一个元素。

  • 出队(Dequeue):从队列的头部移除一个元素。

  • 查看队头(Peek/Front):查看队列头部的元素,但不移除它。 

队列的特点是先进先出,即最早进入队列的元素会最先被移除。


5. 使用队列的 BFS 与不使用队列的 DFS 的对比

特性BFS(使用队列)DFS(不使用队列)
扩展顺序逐层扩展深度优先
数据结构队列(先进先出)栈(后进先出)
适用场景最短路径问题所有路径问题
时间复杂度O(n×m)O(4n×m)
空间复杂度O(n×m)O(n×m)

 6. 总结

队列是 BFS 的核心数据结构,它通过先进先出的特性确保了 BFS 的逐层扩展。在解决最短路径问题时,BFS 使用队列能够高效地找到从起点到终点的最短路径,而不会像 DFS 那样因深度优先搜索而导致超时。理解队列的使用,对于掌握 BFS 算法至关重要。

希望这篇文章能帮助你更好地理解队列在 BFS 中的应用。如果你对队列或 BFS 仍有疑问,欢迎随时提问!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7056.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

总线、UART、IIC、SPI

一图流 总线 概念 连接多个部件的信息传输线&#xff0c;是各部件共享的传输介质 类型 片内总线&#xff1a;连接处理器内核和外设的总线&#xff0c;在芯片内部 片外总线&#xff1a;连接芯片和其他芯片或者模块的总线 总线的通信 总线通信的方式 串行通信 数据按位顺序传…

CLion开发Qt桌面

IDE&#xff1a;CLion Qt Qt版本&#xff1a;5.12 学习正点原子的嵌入式Linux开发板时&#xff0c;使用Qt Creator写代码不是很方便&#xff0c;遂尝试使用CLion搭建Qt开发环境。 一、CLion的Qt环境搭建 1&#xff0c;配置工具链 找到Qt的安装目录&#xff0c;此处为E:\Tools\…

一部手机如何配置内网电脑同时访问内外网

做过运维的朋友都知道&#xff0c;最麻烦的是运维电脑不能远程&#xff0c;每次都得现场进行维护&#xff0c;明明客户那边有可以访问内网的电脑&#xff0c;怎么操作能将这台电脑能访问跟到外网呢&#xff0c;这样不就能通过远程软件远程了吗&#xff1f;嘿嘿。按以下步骤试试…

【深度学习】搭建PyTorch神经网络进行气温预测

第一步 数据加载与观察 ①导包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.optim as optim import warnings warnings.filterwarnings("ignore") %matplotlib inline ②加载数据 features pd.read_csv(…

MyBatis优化及高级查询

一、MyBatis优化 1.配置文件属性 MyBatis可以将数据库配置单独放在一个properties文件中。如创建一个db.properties文件&#xff0c;内容如下&#xff1a; divercom.mysql.jdbc.Driverurljdbc:mysql://localhost:3306/mybatisusernamerootpassword123 接下来在配置文件中&a…

衡量算法性能的量级标准:算法复杂度

今天开始数据结构的学习&#xff01;作为一大重点&#xff0c;拿出态度很重要&#xff0c;想要真实掌握&#xff0c;博客笔记自然少不了&#xff01;重点全部上色&#xff01;避免疏忽 下面我们从0基础开始学习今天的第一节&#xff01;不用担心看不懂&#xff0c;拒绝枯燥的理…

【知识图谱(2)】电影知识图谱构建

本文的主线思路 一共六个板块&#xff1a; #mermaid-svg-fekG4TP2IHz9vlmg {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-fekG4TP2IHz9vlmg .error-icon{fill:#552222;}#mermaid-svg-fekG4TP2IHz9vlmg .error-tex…

单值二叉树(C语言详解版)

一、摘要 今天要讲的是leetcode单值二叉树&#xff0c;这里用到的C语言&#xff0c;主要提供的是思路&#xff0c;大家看了我的思路之后可以点击链接自己试一下。 二、题目简介 如果二叉树每个节点都具有相同的值&#xff0c;那么该二叉树就是单值二叉树。 只有给定的树是单…

在Spring Boot中使用SeeEmitter类实现EventStream流式编程将实时事件推送至客户端

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…

基于本地事务表+MQ实现分布式事务

基于本地事务表MQ实现分布式事务 引言1、原理2、本地消息表优缺点3、本地启动rocketmq4、代码实现及验证4.1、核心代码4.2、代码执行流程4.3、项目结构4.4、项目源码 引言 本地消息表的方案最初由ebay的工程师提出&#xff0c;核心思想是将分布式事务拆分成本地事务进行处理。…

Chrome插件:图片缩放为头像(128*128)

前置条件&#xff1a; 安装有chrome谷歌浏览器的电脑 使用步骤&#xff1a; 1.打开chrome扩展插件 2.点击管理扩展程序 3.加载已解压的扩展程序 4.选择对应文件夹 5.成功后会出现一个扩展小程序 6.点击对应小程序 7.使用小程序 8.拖拽成功后会自动保存到下载 代码&#xf…

idea maven本地有jar包,但还要从远程下载

idea 中&#xff0c;java 工程执行 maven reimport&#xff0c;报jar报无法下载。 我奇了个怪&#xff0c;我明明在本地仓库有啊&#xff0c;你非得从远程下载&#xff1f; 我从供应商那里拿来的&#xff0c;远程当然没有了。 这太奇葩了吧&#xff0c;折腾好久不行。 后来…

HTML<label>标签

例子 三个带标签的单选按钮&#xff1a; <form action"/action_page.php"> <input type"radio" id"html" name"fav_language" value"HTML"> <label for"html">HTML</label><br&…

【数据结构】_不带头非循环单向链表

目录 1. 链表的概念及结构 2. 链表的分类 3. 单链表的实现 3.1 SList.h头文件 3.2 SList.c源文件 3.3 Test_SList.c测试文件 关于线性表&#xff0c;已介绍顺序表&#xff0c;详见下文&#xff1a; 【数据结构】_顺序表-CSDN博客 本文介绍链表&#xff1b; 基于顺序表…

算法刷题笔记——图论篇

这里写目录标题 理论基础图的基本概念图的种类度 连通性连通图强连通图连通分量强连通分量 图的构造邻接矩阵邻接表 图的遍历方式 深度优先搜索理论基础dfs 与 bfs 区别dfs 搜索过程深搜三部曲所有可达路径广度优先搜索理论基础广搜的使用场景广搜的过程 岛屿数量孤岛的总面积沉…

“AI视觉贴装系统:智能贴装,精准无忧

嘿&#xff0c;朋友们&#xff01;今天我要跟你们聊聊一个特别厉害的技术——AI视觉贴装系统。这可不是普通的贴装设备&#xff0c;它可是融合了人工智能、计算机视觉和自动化控制等前沿科技的“智能贴装大师”。有了它&#xff0c;那些繁琐、复杂的贴装工作变得轻松又精准。来…

vim如何设置显示空白符

:set list 显示空白符 示例&#xff1a; :set nolist 不显示空白符 示例&#xff1a; &#xff08;vim如何使设置显示空白符永久生效&#xff1a;vim如何使相关设置永久生效-CSDN博客&#xff09;

Flutter android debug 编译报错问题。插件编译报错

下面相关内容 都以 Mac 电脑为例子。 一、问题 起因&#xff1a;&#xff08;更新 Android studio 2024.2.2.13、 Flutter SDK 3.27.2&#xff09; 最近 2025年 1 月 左右&#xff0c;我更新了 Android studio 和 Flutter SDK 再运行就会出现下面的问题。当然 下面的提示只是其…

AI导航工具我开源了利用node爬取了几百条数据

序言 别因今天的懒惰&#xff0c;让明天的您后悔。输出文章的本意并不是为了得到赞美&#xff0c;而是为了让自己能够学会总结思考&#xff1b;当然&#xff0c;如果有幸能够给到你一点点灵感或者思考&#xff0c;那么我这篇文章的意义将无限放大。 背景 随着AI的发展市面上…

Android Studio打包APK

1.导出APK安装包 如果是首次打包&#xff0c;Create new 单击蓝色对话框右边文件夹&#x1f4c2;图标 &#xff0c;选择密钥保存路径&#xff0c;然后在下方File name对话框中填写您想要名称&#xff0c;再点击OK回到密钥创建对话框。 在此对话框中填写密码&#xff08;Passwo…