【目标跟踪】相机运动补偿

文章目录

  • 一、前言
  • 二、简介
  • 三、改进思路
    • 3.1、状态定义
    • 3.2、相机运动补偿
    • 3.3、iou和ReID融合
    • 3.4、改进总结
  • 四、相机运动补偿

一、前言

  1. 前 MOT (Multiple Object Tracking) 最有效的方法仍然是 Tracking-by-detection。
  2. 今天给大家分享一篇论文 BoT-SORT。论文地址 ,论文声称很牛*,各种屠榜,今天我们就来一探究竟。
  3. 主要是分享论文提出的改进点以及分享在自己的算法中如何去运用。

二、简介

Tracking-by-detection 成为 MOT 任务中最有效的范式。Tracking-by-detection 包含一个步骤检测步骤,然后是一个跟踪步骤。跟踪步骤通常由2个主要部分组成:

(1)运动模型和状态估计,用于预测后续帧中轨迹的边界框。卡尔曼滤波器 (KF) 是此任务的主流选择。

(2)将新帧检测与当前轨迹集相关联。对于步骤2:有2种主要的方法用于处理关联任务:

  • 目标的定位,主要是预测轨迹边界框和检测边界框之间的 IoU。(SORT)
  • 目标的外观模型和解决 Re-ID 任务。(DeepSORT)

在许多复杂的场景中,预测边界框的正确位置可能会由于相机运动而失败,这导致2个相关边界框之间的重叠率低,最终导致跟踪器性能低下。

作者通过采用传统的图像配准来估计相机运动,通过适当地校正卡尔曼滤波器来克服这个问题。这里将此称为相机运动补偿(CMC)。

三、改进思路

3.1、状态定义

x, y, w, h = box.centerX, box.centerY, box.width, box.height

(1) SORT,状态向量被选择为7元组:

在这里插入图片描述

s = w * h, r = h / w

(2) DeepSORT,状态向量被选择为8元组:

在这里插入图片描述

随着镜头移动或者物体与相机的相对运动,物体的长宽比也是会发生变化的。

(3) BoT-SORt 状态向量:

在这里插入图片描述

作者通过实验发现,直接估计边界框的宽度和高度会可以得到更好的性能。

在这里插入图片描述

蓝色框 DeepSORT 绿色框 BoT-SORT

且Q、R设置为与当前状态有关。具体设置如下图:

在这里插入图片描述

3.2、相机运动补偿

这个是我们的重点,针对这一点如何实现,包括如何在我们自己代码运用,我下一节单独拿来分析。

Tracking-by-detection严重依赖 预测框predictBox与检测框detectBox的重叠程度(如 IOU)。在自动驾驶领域中,相机是动态的,图像平面的边界框位置可能会发生显著变化。就算在相机固定的情况下,跟踪器也可能因振动或漂移引起的运动而受到影响。
在这里插入图片描述

这部分使用opencv中的全局运动估计(GMC)技术来表示背景运动。 首先提取图像关键点,再利用稀疏光流进行基于平移的局部异常点抑制的特征跟踪。然后使用 RANSAC 计算放射变换矩阵,再将预测的边界框从 k-1 帧坐标变换到其下一阵第k帧的坐标。上图表现出的效果看起来也很不错。

变换矩阵的平移部分仅影响边界框的中心位置,而另一部分影响所有状态向量和噪声矩阵。M ∈ R2×2 是包含仿射矩阵 a 的尺度和旋转部分的矩阵,并且 T 包含平移部分。 简单理解 M∈R2×2 为二维旋转矩阵,T为平移矩阵。由于我们前面状态定义为:

在这里插入图片描述

所以所有的状态都需要旋转操作,平移只需要对中心点(x,y)平移即可。如何在预测后的状态量中再旋转平移拿到最终状态量,用最终状态量进行匹配操作。
在这里插入图片描述

如果看不懂,把公式写出这样大家应该就明白了

在这里插入图片描述

关于 M 怎么求? 我下面一节会提供一个简单的思路和代码,大家可以参考下。

在经过上述式子更新过后,我们可以得到计算相机运动补偿后的目标状态与增益,此时把相应的 X,P 进行卡尔曼滤波的更新步骤。
在这里插入图片描述

3.3、iou和ReID融合

这部分是论文新提出的方法,也是可圈可点的地方。不过由于实时性太差,并不是适用实际场景,所以不是我们今天分析的重点。

为了提取 Re-ID 特征,采用了 FastReID 库中 BoT 之上的更强的 baseline——SBS(2020年提出)+ ResNeSt50 作为骨干网络。

更新外观状态:
在这里插入图片描述

由于外观特征很容易受到拥挤、遮挡和模糊目标的扰动破坏,作者仅使用高置信度的框。对于轨迹外观状态e与新检测嵌入特征 f 的关联,采用余弦相似性度量。α=0.9 是动量项。外观成本 Aa 和运动成本 Am 计算成本矩阵 C。其中权重因子 λ 通常设置为 0.98 。
在这里插入图片描述

作者开发了一种将运动和外观信息相结合的新方法,即IoU距离矩阵和余弦距离矩阵。首先,根据 IoU 的得分,低余弦相似性或遥远的候选者被拒绝。然后,使用矩阵的每个元素中的最小值作为我们的成本矩阵 C 的最终值。IoU-ReID 融合管道可以公式化如下:
在这里插入图片描述

3.4、改进总结

我们结合流程图,回顾以上三点改进:

在这里插入图片描述

  • 步骤 1 的提升并不明显。可以说步骤 1 的状态也是为了步骤 2 服务的。
  • 步骤 2 对跟踪器分数的提升较大。实际测试发现步骤 2 的提升是很大的,尤其是对突然发生抖动场景(如车子过减速带,急刹车等)。
  • 步骤 3 加入RE-ID之后速度非常慢,达不到实时检测跟踪。

四、相机运动补偿

整体思路如下:

  1. 计算图片背景特征点角点检测
  2. 上一帧与当前帧光流匹配
  3. 根据特征点计算旋转平移

之前博主有分享过一篇光流跟踪博客 【目标跟踪】光流跟踪(python、c++代码)。

那篇博客思路与这里有点像素, 不过那篇博客是对每个检测的目标框进行光流估计,而且没有考虑旋转。

我们这里是对背景进行光流估计,补偿所有的检测框。

根据论文思路,博主自己写了一个 demo。

import numpy as np
import cv2
import osimg_dir = "F:\\image_raw\\"
n_frames = len(os.listdir(img_dir))
w, h = 1920, 1080
num = 1
prev = cv2.imread(img_dir + "{}.jpg".format(num))
prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
color = np.random.randint(0, 255, (20000, 3))for i in range(n_frames - 2):curr_path = img_dir + "{}.jpg".format(i + 2)curr = cv2.imread(curr_path)drawImg = curr.copy()mask = np.zeros_like(drawImg)prev_pts = cv2.goodFeaturesToTrack(prev_gray, maxCorners=200, qualityLevel=0.01, minDistance=30, blockSize=3)curr_gray = cv2.cvtColor(curr, cv2.COLOR_BGR2GRAY)curr_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, curr_gray, prev_pts, None)idx = np.where(status == 1)[0]prev_pts = prev_pts[idx]curr_pts = curr_pts[idx]m, _ = cv2.estimateAffinePartial2D(prev_pts, curr_pts)prev_gray = cv2.cvtColor(curr, cv2.COLOR_BGR2GRAY)for i, (new, old) in enumerate(zip(prev_pts, curr_pts)):a, b = new.ravel()c, d = old.ravel()mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)drawImg = cv2.circle(drawImg, (int(a), int(b)), 4, color[i].tolist(), -1)showImg = cv2.add(drawImg, mask)cv2.imshow("show", showImg)cv2.waitKey(100)

代码中的 m 就是我们的旋转平移矩阵。选取特征点时尽量选择背景,不要选择动态目标,可以通过检测简单过滤。

在这里插入图片描述

有了 m 我们可以对 kalman 中的预测状态进行再修正后,进行匹配。

整体的效果非常不错,尤其是在颠簸的道路行驶时,基本碾压其他算法。
在这里插入图片描述

论文公布的效果对比图:
在这里插入图片描述


如有疑问,欢迎大家交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/251681.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

XCTF:warmup[WriteUP]

CtrlU查看页面源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta http-equiv"X-UA-Compatible&q…

【Matplotlib】figure方法之图形的保存

&#x1f388;个人主页&#xff1a;甜美的江 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;matplotlib &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

idea常用设置

1、内存优化 根据自己电脑本身的内存&#xff0c;对idea安装包里bin目录下的idea64.exe.vmoptions文件进行修改 -server -Xms256m -Xmx2048m -XX:MaxPermSize1024m -XX:ReservedCodeCacheSize256m -ea -Dsun.io.useCanonCachesfalse -Djava.Net.preferIPv4Stacktrue -Djsse.e…

STM32--HAL库定时器学习记录(易懂)--持续学习

一、什么是定时器 定时器就是计数器&#xff0c;通过计数完成一系列功能。 二、定时器的分类 定时器分为基本定时器、通用定时器、高级定时器。级别不同&#xff0c;功能不同。级别越高&#xff0c;功能越强。 三、定时器&#xff08;计数器&#xff09;三个重要寄存器 预分…

CSS:水平垂直居中

公共的 CSS 样式&#xff1a; .parent {width: 300px;height: 300px;background-color:#d0e4fe; }.child {width: 100px;height: 100px;background-color:orange; }HTML: <div class"parent"><div class"child"></div> </div>最…

C#之linq和lamda表达式GroupBy分组拼接字符串

文章目录 C#之linq和lamda表达式GroupBy分组拼接字符串业务需求核心代码调试 C#之linq和lamda表达式GroupBy分组拼接字符串 业务需求 点击提示信息&#xff0c;如&#xff1a;“售后单【SH001】序列号【001&#xff0c;002&#xff0c;006】&#xff1b;售后单【SH002】序列号…

华为自动驾驶干不过特斯拉?

文 | AUTO芯球 作者 | 李诞 什么&#xff1f; 华为的智能驾驶方案干不过蔚小理&#xff1f; 特斯拉的智能驾驶[FSD]要甩中国车企几条街&#xff1f; 这华为问界阿维塔刚刚推送“全国都能开”的城区“无图 NCA” 就有黑子来喷了 这是跪久了站不起来了吧 作为玩车14年&…

flask_django_python五金电商网络营销的可视化分析研究

前面部分完成了系统需求分析&#xff0c;了解到新闻数据业务方面的需求&#xff0c;系统主要分为用户管理、五金信息管理、在线留言、系统管理等功能。销的可视化研究&#xff0c;并对这些数据进行处理&#xff0c; 然后对这些数据进行可视化分析和统计。 Python 爬虫技术目前来…

【华为】GRE VPN 实验配置

【华为】GRE VPN 实验配置 前言报文格式 实验需求配置思路配置拓扑GRE配置步骤R1基础配置GRE 配置 ISP_R2基础配置 R3基础配置GRE 配置 PCPC1PC2 抓包检查OSPF建立GRE隧道建立 配置文档 前言 VPN &#xff1a;&#xff08;Virtual Private Network&#xff09;&#xff0c;即“…

Electron实战(二):将Node.js和UI能力(app/BrowserWindow/dialog)等注入html

文章目录 设置webPreferences参数安装electron/remotemain进程中初始化html中使用dialog踩坑参考文档 上一篇&#xff1a;Electron实战(一)&#xff1a;环境搭建/Hello World/打包exe 设置webPreferences参数 为了能够在html/js中访问Node.js提供fs等模块&#xff0c;需要在n…

Django的web框架Django Rest_Framework精讲(二)

文章目录 1.自定义校验功能&#xff08;1&#xff09;validators&#xff08;2&#xff09;局部钩子&#xff1a;单字段校验&#xff08;3&#xff09;全局钩子&#xff1a;多字段校验 2.raise_exception 参数3.context参数4.反序列化校验后保存&#xff0c;新增和更新数据&…

20240131在ubuntu20.04.6下使用whisper不同模式的比对

20240131在ubuntu20.04.6下使用whisper不同模式的比对 2024/1/31 16:07 首先你要有一张NVIDIA的显卡&#xff0c;比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡&#xff01;】 2、请正确安装好NVIDIA最新的驱动程序和CUDA。可选安装&#xff01; 3、配置whisper…

【Linux取经路】进程控制——程序替换

文章目录 一、单进程版程序替换看现象二、程序替换的基本原理三、程序替换接口学习3.1 替换自己写的可执行程序3.2 第三个参数 envp 验证四、结语一、单进程版程序替换看现象 #include <stdio.h> #

深入理解Istio服务网格(一)数据平面Envoy

一、服务网格概述(service mesh) 在传统的微服务架构中&#xff0c;服务间的调用&#xff0c;业务代码需要考虑认证、熔断、服务发现等非业务能力&#xff0c;在某种程度上&#xff0c;表现出了一定的耦合性 服务网格追求高级别的服务流量治理能力&#xff0c;认证、熔断、服…

【Spring】自定义注解 + AOP 记录用户的使用日志

目录 ​编辑 自定义注解 AOP 记录用户的使用日志 使用背景 落地实践 一&#xff1a;自定义注解 二&#xff1a;切面配置 三&#xff1a;Api层使用 使用效果 自定义注解 AOP 记录用户的使用日志 使用背景 &#xff08;1&#xff09;在学校项目中&#xff0c;安防平台…

vue2 el-table新增行内删除行内(两种写法)里面第一个是树组件,第二个是数字组件,第一个数组件只能勾选最后一个节点

第一种 <template><div class"time_table"><div style"margin-bottom: 10px"><el-button click"addRowFn">新增</el-button></div><el-form ref"costForm" :model"formData">&l…

ArcGIS Pro字段编号相关代码

字段属于SHP文件的重要组成部分&#xff0c;在某些时候需要对字段进行编号&#xff0c;这里为大家介绍一下字段编号相关的代码&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载的POI数据&#xff0c;除了POI数据&#xff0c;常见的GIS数据都可…

WPF布局面板

StackPanel StackPanel 是一种常用的布局控件,可以支持水平或垂直排列,但不会换行。当子元素添加到 StackPanel 中时,它们将按照添加的顺序依次排列。默认情况下,StackPanel 的排列方向是垂直的,即子元素将从上到下依次排列。可以使用 Orientation 属性更改排列方向。可以…

后端登录校验

文章目录 登录校验CookieSessionJWT生成JWT校验JWT基于JWT进行身份验证CSRF Cookie、Session、Token的区别&#xff1f;过滤器(Filter)配置过滤器过滤器链 登录校验 由于HTTP协议是无状态的&#xff0c;我们在进行登录后等一系列接口请求是无法直接区分是哪一个用户的发给服务…

SpringBoot 使用定时任务(SpringTask)

Spring3.0以后自带的task&#xff0c;可以将它看成一个轻量级的Quartz&#xff0c;而且使用起来比Quartz简单许多。 使用步骤&#xff1a; 1.导入坐标 在spring-boot-starter-web坐标中&#xff0c;就包含了SpringTask&#xff0c;所以一般的Web项目都包含了。 <depende…