《Python 网络爬虫简易速速上手小册》第1章:Python 网络爬虫基础(2024 最新版)

在这里插入图片描述

文章目录

  • 1.1 网络爬虫简介
    • 1.1.1 重点基础知识讲解
    • 1.1.2 重点案例:社交媒体数据分析
    • 1.1.3 拓展案例1:电商网站价格监控
    • 1.1.4 拓展案例2:新闻聚合服务
  • 1.2 网络爬虫的工作原理
    • 1.2.1 重点基础知识讲解
    • 1.2.2 重点案例:股票市场数据采集
    • 1.2.3 拓展案例 1:博客文章抓取
    • 1.2.4 拓展案例 2:酒店价格监控
  • 1.3 网络爬虫的法律与道德考量
    • 1.3.1 重点基础知识讲解
    • 1.3.2 重点案例:社交媒体数据抓取
    • 1.3.3 拓展案例 1:网站内容聚合
    • 1.3.4 拓展案例 2:在线商店价格监控

1.1 网络爬虫简介

1.1.1 重点基础知识讲解

网络爬虫,也称为网页蜘蛛或网页机器人,是一种自动化的网络程序,设计用来从万维网上下载网页,提取出有用的信息或者资源。想要精通网络爬虫,首先得了解几个基础概念:

  • HTML & CSS: 网页的骨架和皮肤。HTML 定义了网页的结构,而 CSS 则负责外观。掌握它们,你才能让爬虫知道去哪儿找数据。
  • JavaScript: 许多现代网站利用 JavaScript 动态加载内容。了解基础的 JavaScript 及其如何影响网页内容的加载,对爬取动态内容至关重要。
  • HTTP/HTTPS 协议: 这是爬虫与网站交流的语言。理解请求(Request)和响应(Response)的基本原理,能帮你更好地设计爬虫。
  • APIs: 许多网站提供 APIs 来让开发者合法地访问数据。利用 APIs 能够是一个更高效、更稳定的数据抓取方式。

接下来,让我们通过几个案例,深入探索网络爬虫在实际生产中的应用。

1.1.2 重点案例:社交媒体数据分析

假设你是一个数据分析师,需要从 Twitter 抓取关于特定话题的推文,进行情感分析。使用 Python 的 Tweepy 库,可以方便地接入Twitter API,抓取数据。这个案例不仅实用,而且非常贴近现实生产,社交媒体数据分析在市场研究、公共舆论监控等领域有广泛应用。

import tweepy# 初始化API
auth = tweepy.OAuthHandler('YOUR_CONSUMER_KEY', 'YOUR_CONSUMER_SECRET')
auth.set_access_token('YOUR_ACCESS_TOKEN', 'YOUR_ACCESS_TOKEN_SECRET')
api = tweepy.API(auth)# 抓取特定话题的推文
for tweet in tweepy.Cursor(api.search, q="#特定话题", lang="en").items(100):print(tweet.text)

1.1.3 拓展案例1:电商网站价格监控

想象你是一个电商企业的竞争情报分析师,需要监控竞争对手的产品价格。使用 Python 的 BeautifulSoup 库可以解析 HTML 页面,抓取产品价格信息。这个案例在电子商务竞争分析中非常常见。

import requests
from bs4 import BeautifulSoup# 请求网页
response = requests.get('http://example.com/product')
soup = BeautifulSoup(response.text, 'html.parser')# 解析价格信息
price = soup.find('span', class_='product-price').text
print(f"产品价格: {price}")

1.1.4 拓展案例2:新闻聚合服务

假设你正在开发一个新闻聚合服务,需要从多个新闻网站抓取最新的新闻标题和链接。使用 Python 的 Requests 库来发送HTTP请求,搭配 BeautifulSoup 进行内容解析。这个案例在信息聚合和内容提供服务中极为常见。

import requests
from bs4 import BeautifulSoup# 请求新闻网页
response = requests.get('http://news.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 抓取新闻标题和链接
for news_item in soup.find_all('div', class_='news-item'):title = news_item.find('h2').textlink = news_item.find('a')['href']print(f"标题: {title}, 链接: {link}")

通过这三个案例,我们不仅能看到 Python 在网络爬虫应用中的强大能力,还能体会到网络爬虫技术在不同行业中的广泛应用。这些案例涵盖了从社交媒体分析、价格监控到新闻聚合的多种实用场景,展示了网络爬虫技术如何帮助我们从大量网页中提取有价值的信息。

在这里插入图片描述


1.2 网络爬虫的工作原理

1.2.1 重点基础知识讲解

要掌握网络爬虫的工作原理,我们首先需要理解几个关键概念:

  • 请求 (Request):这是网络爬虫向服务器发出的“请给我数据”的呼唤。通常分为 GET 请求(请求数据)和 POST 请求(提交数据)。
  • 响应 (Response):当服务器接收到请求后,它回送的数据就是响应。响应中包含了许多有用的信息,包括请求的网页数据。
  • 解析 (Parsing):获取响应后,爬虫需要从中提取有用的信息,这个过程称为解析。常用的解析工具包括 BeautifulSoup 和 lxml 。
  • 数据存储 (Data Storage):爬虫从网页中提取的数据需要被存储起来,以便进一步的处理或分析。存储方式有很多种,包括但不限于数据库、文件或内存中。

接下来,我们将通过几个实际案例来深入探讨网络爬虫的工作原理。

1.2.2 重点案例:股票市场数据采集

假设你是一名金融分析师,需要实时追踪特定股票的价格变动。使用 Python 的 requests 库可以轻松地实现这一目标。通过发送 GET 请求到股票信息网站,然后解析响应数据获取股价信息。这个案例在金融分析和市场监控中非常实用。

import requests
from bs4 import BeautifulSoup# 发送 GET 请求
url = "http://example.com/stock/AAPL"
response = requests.get(url)# 解析响应内容
soup = BeautifulSoup(response.content, 'html.parser')
price = soup.find('div', class_='stock-price').text
print(f"苹果股价: {price}")

1.2.3 拓展案例 1:博客文章抓取

想象你正在构建一个个人项目,需要从你最喜欢的技术博客中抓取最新文章的标题和链接,以便快速浏览。这时,你可以使用 Python 的 requestsBeautifulSoup 来完成这项任务。这个案例对于内容聚合器或个人学习资源库的构建非常有帮助。

import requests
from bs4 import BeautifulSoup# 请求博客首页
response = requests.get('https://techblog.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 抓取文章标题和链接
articles = []
for article in soup.find_all('article'):title = article.find('h2').textlink = article.find('a')['href']articles.append({'title': title, 'link': link})for article in articles:print(f"标题: {article['title']}, 链接: {article['link']}")

1.2.4 拓展案例 2:酒店价格监控

假设你是一名旅行爱好者,希望监控某旅游网站上目的地酒店的价格,以便在价格最低时预订。通过 Python 的 requests 库发送请求,并利用 BeautifulSoup 解析响应内容中的酒店价格信息。这个案例对于预算有限的旅行者来说非常实用。

import requests
from bs4 import BeautifulSoup# 发送请求到酒店列表页面
response = requests.get('http://travel.example.com/hotels?destination=paris')
soup = BeautifulSoup(response.text, 'html.parser')# 解析酒店价格
hotels = []
for hotel in soup.find_all('div', class_='hotel-item'):name = hotel.find('h2').textprice = hotel.find('span', class_='price').texthotels.append({'name': name, 'price': price})for hotel in hotels:print(f"酒店: {hotel['name']}, 价格: {hotel['price']}")

通过这些案例,我们不仅理解了网络爬虫的基本工作原理,还学习了如何在实际生产中应用这些原理来解决实际问题。无论是金融市场的数据采集,个人兴趣的内容聚合,还是生活中的价格监控,网络爬虫技术都能提供强大的支持。

在这里插入图片描述


1.3 网络爬虫的法律与道德考量

1.3.1 重点基础知识讲解

在开发和部署网络爬虫时,法律和道德考量是不可或缺的一部分。违反这些准则可能导致法律后果,包括被禁止访问目标网站、面临诉讼甚至罚款。理解以下几个关键点是至关重要的:

  • robots.txt 协议:这是网站告知网络爬虫哪些部分可被爬取、哪些部分禁止爬取的标准。遵守 robots.txt 是网络爬虫开发的基本礼仪。
  • 版权法:网页上的内容,如文本、图片和视频,通常受版权法保护。未经授权擅自抓取和使用这些内容可能会侵犯版权。
  • 隐私法:在处理个人数据(如社交媒体帖子、论坛评论等)时,必须遵守适用的隐私法律和规定,如 GDPR 或 CCPA。
  • 访问频率和负载:过度请求网站可能会对其正常运营造成干扰,这不仅是一个道德问题,也可能引起法律问题。

1.3.2 重点案例:社交媒体数据抓取

假设你是一家营销公司的数据分析师,需要分析特定话题在社交媒体上的讨论趋势。使用 Python 来抓取 Twitter 上的相关帖子是一个常见的做法。在这个过程中,确保遵循 Twitter 的使用条款和访问频率限制至关重要。

import tweepy# 初始化 Tweepy API
auth = tweepy.OAuthHandler('YOUR_CONSUMER_KEY', 'YOUR_CONSUMER_SECRET')
auth.set_access_token('YOUR_ACCESS_TOKEN', 'YOUR_ACCESS_TOKEN_SECRET')
api = tweepy.API(auth, wait_on_rate_limit=True)# 搜索帖子
for tweet in tweepy.Cursor(api.search, q="#特定话题", lang="en", tweet_mode='extended').items(100):print(tweet.full_text)

1.3.3 拓展案例 1:网站内容聚合

你正在开发一个聚合多个新闻源内容的网站。在抓取新闻文章并展示在你的网站上之前,确保你有权使用这些内容,或者只展示文章的标题和一小段摘要,并链接回原始文章,以避免侵犯版权。

import requests
from bs4 import BeautifulSoup# 请求新闻网站
response = requests.get('https://news.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 解析并展示新闻标题和链接
for news_item in soup.select('.news-title'):title = news_item.textlink = news_item.find('a')['href']print(f"标题: {title}, 链接: {link}")

1.3.4 拓展案例 2:在线商店价格监控

你为一家价格比较网站工作,负责监控不同在线商店的产品价格。在编写爬虫抓取这些信息时,重要的是要控制请求的频率,避免因为发送过多请求而对商店的网站造成负担。

import time
import requests
from bs4 import BeautifulSoupproduct_urls = ['http://onlinestore.example.com/product1', 'http://onlinestore.example.com/product2']for url in product_urls:# 发送请求response = requests.get(url)soup = BeautifulSoup(response.text, 'html.parser')# 解析产品价格price = soup.find('span', class_='price').textprint(f"产品价格: {price}")# 间隔时间,避免过快请求time.sleep(10)

通过以上案例,我们看到,在实际工作中使用网络爬虫时,遵守法律规定和道德标准是非常重要的。这不仅有助于保护你的项目免受法律风险,也是对其他网站运营者的尊重和负责任的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252380.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运营商数智化缩影:一部哑资源的资源管理史

不知你是否曾经留意过马路边的电杆、路面上的人井、还有路边不知道里面装的是什么的大箱子,稍微观察一下其实就会发现,这些设施上都会刻有产权归属单位,比如中国移动、中国电信、中国联通等等。那么,这些运营商的基础设施都是用来…

TCP TIME_WAIT 过多怎么处理

文章目录 1.什么是 TCP TIME_WAIT?2.为什么要 TIME_WAIT?3.TIME_WAIT 过多的影响4.解决办法4.1 调整短连接为长连接4.2 调整系统内核参数 5.小结参考文献 1.什么是 TCP TIME_WAIT? TCP 断开连接四次挥手过程中,主动断开连接的一方&#xff…

YOLO-World——超级轻量级开放词汇目标检测方法

前言 目标检测一直是计算机视觉领域中不可忽视的基础挑战,对图像理解、机器人技术和自主驾驶等领域具有广泛应用。随着深度神经网络的发展,目标检测方面的研究取得了显著进展。尽管这些方法取得了成功,但它们存在一些限制,主要体…

http伪造本地用户字段系列总结

本篇记录了http伪造本地用户的多条字段,便于快速解决题目 用法举例: 直接把伪造本地用户的多个字段复制到请求头中,光速解决部分字段被过滤的问题。 Client-IP: 127.0.0.1 Forwarded-For-Ip: 127.0.0.1 Forwarded-For: 127.0.0.1 Forwarded…

双非本科准备秋招(17.1)—— 力扣二叉树

1、257. 二叉树的所有路径 要求返回根节点到叶子节点的所有路径,这里用前序遍历就好。 每次递归前,都让字符串s加上当前节点的值和“->”,然后判断是否为叶子节点,如果是的话,说明这条路径是一个答案,因…

【教程】Linux使用支持文件恢复的rm命令

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 背景介绍 首先非常不幸地告诉你:Linux 系统的标准 rm 命令不支持文件恢复功能。一旦使用 rm 删除了文件或目录,它们就会从文件系统中永久删除,除非你使用专门的文件恢复工具尝试…

计算机设计大赛 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…

算法学习——LeetCode力扣哈希表篇2

算法学习——LeetCode力扣哈希表篇2 454. 四数相加 II 454. 四数相加 II - 力扣(LeetCode) 描述 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 …

Java 学习和实践笔记(1)

2024年,决定好好学习计算机语言Java. B站上选了这个课程:【整整300集】浙大大佬160小时讲完的Java教程(学习路线Java笔记)零基础,就从今天开始学吧。 在这些语言中,C语言是最基础的语言,绝大多…

C++ this指针/常量成员函数/const/mutable

目录 1.this 指针2.常量成员函数3.mutable 成员变量4.const 关键字总结5.参考内容 1.this 指针 this 指针,指向成员函数所作用的对象,并且 this 总是指向这个对象,所以 this 是一个常量指针,我们不允许改变 this 中保存的地址。th…

arcgis各种版本下载

arcgic 下载!!! ArcGIS是一款地理信息系统软件,由美国Esri公司开发。它提供了一系列完整的GIS功能,包括地图制作、空间数据管理、空间分析、空间信息整合、发布与共享等。ArcGIS是一个可扩展的GIS平台,提供…

vite+vue3发布自己的npm组件+工具函数

记录一下个人最近一次发布npm组件的过程: 一、创建组件和工具函数 执行命令创建一个空项目: npm create vite 创建过程稍微有些慢,不知何故?其中选择vue , 个人暂时使用的JS 。在 src 目录下面创建一个文件 package 存放组件和公…

Spring Web Header 解析常见错误

在上一章,我们梳理了 URL 相关错误。实际上,对于一个 HTTP 请求而言,URL 固然重要,但是为了便于用户使用,URL 的长度有限,所能携带的信息也因此受到了制约。 如果想提供更多的信息,Header 往往…

CGAL-3D 凸包算法

3D 凸包算法 一、概述二、静态凸包构造1. Traits 特征类2. 极端点3. 半空间相交4. 凸性检验 三、动态凸包构造四、性能 一、概述 一个点集 S∈R3 是凸的,如果对于任意两点 p 和 q 在集合中,具有端点的线段 p 和 q 包含在 S。集合的凸包 P 包含点集 S 的最…

Java笔记 --- 六、IO流

六、IO流 概述 分类 纯文本文件:Windows自带的记事本打开能读懂的 eg:txt文件,md文件,xml文件,lrc文件 IO流体系 字节流 FileOutputStream 操作本地文件的字节输出流,可以把程序中的数据写到本地文件中…

XAI:探索AI决策透明化的前沿与展望

文章目录 📑前言一、XAI的重要性二、为什么需要可解释人工智能三、XAI的研究与应用四、XAI的挑战与展望 📑前言 随着人工智能技术的快速发展,它已经深入到了我们生活的方方面面,从智能手机、自动驾驶汽车到医疗诊断和金融投资&…

备战蓝桥杯---搜索(剪枝)

何为剪枝,就是减少搜索树的大小。 它有什么作用呢? 1.改变搜索顺序。 2.最优化剪枝。 3.可行性剪枝。 首先,单纯的广搜是无法实现的,因为它存在来回跳的情况来拖时间。 于是我们可以用DFS,那我们如何剪枝呢&#…

浅析现代计算机启动流程

文章目录 前言启动流程概述磁盘分区格式MBR磁盘GPT磁盘隐藏分区 传统BIOS引导传统BIOS启动流程 UEFI引导UEFI引导程序UEFI启动流程 引导加载程序启动操作系统相关参考 前言 现代计算机的启动是一个漫长的流程,这个流程中会涉及到各种硬件的配置与交互,包…

考研数据结构笔记(1)

数据结构(1) 数据结构在学什么?数据结构的基本概念基本概念三要素逻辑结构集合线性结构树形结构图结构 物理结构(存储结构)顺序存储链式存储索引存储散列存储重点 数据的运算 算法的基本概念什么是算法算法的五个特性有…

Linux嵌入式开发+驱动开发-中断

swi汇编指令可以产生软中断,以下是硬件中断的产生到执行完毕的全过程: 在自己设计的芯片“CPU响应中断”程序的第四个步骤可以转向“中断向量控制器”,中断向量控制器中存储中断元服务地址即处理中断处理程序的地址,而不用使用0X1…