【多模态MLLMs+图像编辑】MGIE:苹果开源基于指令和大语言模型的图片编辑神器(24.02.03开源)

项目主页:https://mllm-ie.github.io/
论文 :基于指令和多模态大语言模型图片编辑 2309.Guiding Instruction-based Image Editing via Multimodal Large Language Models (加州大学圣巴拉分校+苹果)
代码:https://github.com/apple/ml-mgie | gradio_UI
媒体:机器之心的解析https://mp.weixin.qq.com/s/c87cUuyz4bUgfW2_ma5xpA

封面图
在这里插入图片描述
网友实测
在这里插入图片描述

一些概念

MLLMs: 多模态大语言模型

多模态大语言模型(Multimodal large language models ),是从预训练的LLM(大语言模型)初始化参数,MLLM添加了一个视觉编码器(visual encoder 例如,CLIP-L )来提取视觉特征 f f f,以及一个适配器(adapter) W W W(一般为简单神经网络)将特征 f f f投影到语言模态中。根据论文2304.Visual Instruction Tuning(LLaVA) :MLLMs的训练可以概括为:
在这里插入图片描述
其中 l l l C C C 中单词切分后(word token)的长度。 C C C可以是图像标题(特征对齐)或数据的多模态指令(指令调优)。MLLM 遵循下一个单词预测的标准自回归训练,然后可以作为各种视觉任务的视觉助手(visual assistant),例如视觉问答(visual question answering)和复杂的推理(complex reasoning)。尽管 MLLM 能够通过上述训练进行视觉感知,但它的输出仍然仅限于文本

MGIE : 多模态大语言模型引导的图像编辑

MGIE 表示:Multimodal large language model-Guided Image Editing (MGIE)

原文摘要:

基于指令(Instruction-based)的图像编辑通过自然命令提高了图像操作的可控性和灵活性,而无需详细描述或区域掩模。然而,人类的指令有时过于简短,目前的方法无法捕捉和遵循。多模态大语言模型(Multimodal large language models (MLLMs))在跨模态理解和视觉感知响应生成方面显示出很好的能力。
我们研究了(investigate) MLLM如何促进编辑指令(instructions),并提出 MLLM 引导的图像编辑 (MGIE)。
MGIE学习推导表达指令(derive expressive instructions)并提供明确指导(explicit guidance)。编辑模型共同捕获这种视觉想象,并通过端到端训练执行操作。我们评估了photoshop方式的修改全局照片优化局部编辑的各个方面。

大量的实验结果表明,表达性指令对于基于指令的图像编辑至关重要,我们的MGIE可以在保持竞争性推理效率的同时显著改善自动度量和人工评估。

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

主要方法

基本架构参考

InstructPix2Pix,LLaMA-7B为基线 ,着重借鉴了 LLaVA的模型

22.11.InstructPix2Pix: Learning to Follow Image Editing Instructions.
23.02.LLaMA: Open and Efficient Foundation Language Models
23.04.LLaVA: Large Language and Vision Assistant(Visual Instruction Tuning)
在这里插入图片描述

MGIR模型框架

使用的MLLMs预训练多模态模型 LLaVA-7B 进行指令调优(instruction tuning)并获得相应的视觉tokens : https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1 (只微调了词嵌入(word embedding)和LM head)

一个预训练的文本总结模型 Flan-T5-XXL(summarizer)获得对简洁的叙述:https://huggingface.co/google/flan-t5-xxl ,用在训练中,与生成精炼题词计算loss.
w一个是借助外部模型生成题词总结,一个是MLLM微调后输出的总结。
在这里插入图片描述

图 2:方法概述。

利用 MLLM 来增强基于指令的图像编辑 (“what will this image be like if [instruction]” ,来重写)。
训练好后,大视觉语言模型直接推导出简洁明确的表达指令(concise expressive instruction),并为预期目标提供明确的视觉相关指导(visual token)然后通过Edit head 注入到Diffusion模型。 扩散模型以端到端的方式通过编辑头联合训练和实现具有潜在想象的图像编辑。
其中,
Edit Head 表示:序列到序列模型 (4层transformer),它将来自 MLLM 的顺序视觉标记(sequential visual tokens)映射到语义上有意义的潜在编码 U = {u1, u2,…, uL} 作为编辑指导
在这里插入图片描述

具体算法训练流程

V V V表示:输入图片
X X X表示:指令(例如具体修改意图:改颜色、修改内容)
O O O表示: 最终的目标图像
T T T:表示: 序列到序列模型 (4层transformer),它将来自 MLLM 的顺序视觉标记(sequential visual tokens)映射到语义上有意义的潜在编码 U = {u1, u2,…, uL} 作为编辑指导
u u u表示: 最终提示修改的视觉语义编辑
F F F表示:stable diffusion的预训练模型
算法 1 展示了 MGIE 学习过程。
MLLM 通过指令损失 L_ins 导出简洁指令 ε。借助 [IMG] 的潜在想象,图片转变其模态并引导 图片合成结果图像。编辑损失 L_edit 用于扩散训练。由于大多数权重可以被冻结(MLLM 内的自注意力块),因而可以实现参数高效的端到端训练。
在这里插入图片描述
公式2
在这里插入图片描述
公式5
在这里插入图片描述

与主流方法对比

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252392.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 时间索引的选择

背景 MySQL 在使用过程中经常会对时间加索引,方便进行时间范围的查询,常见的时间类型有 data、datetime、long、timestamp 等,在此分析下这几种时间类型的索引大小,以找到比较合适的时间类型。 时间类型对比 常用的索引类型是 …

YIA主题如何关闭新版本升级提示?WordPress主题怎么取消升级提醒?

前两天YIA主题发布了升级到2.8版本,新增了一些功能,优化调整修复了一些功能,但是这些功能调整幅度不大,加上boke112百科使用的YIA主题已经进行了很多方面的个性化修改,所以就懒得升级了,但是每次进入WordPr…

linux k8s 源码编译及单集群测试

目录 概述实践安装插件docker 在线安装containerd安装二进制安装yum安装修改containder配置文件 cnietcdrsyncgo设置golang代理 安装CFSSL下载kubernetes代码编译启动本地单节点集群问题k8s没有被正常启动该如何k8s正常启动日志测试 结束 概述 此文详细说明在 centos 7上编译 k…

YOLO-World: Real-Time Open-Vocabulary Object Detection

文章目录 1. Introduction2. Experiments2.1 Implementation Details2.2 Pre-training2.3 Ablation Experiments2.3.1 预训练数据2.3.2 对RepVL-PAN的消融研究2.3.3 文本编码器 2.4 Fine-tuning YOLO-World2.5 Open-Vocabulary Instance Segmentation2.6 Visualizations Refere…

vscode 突然连接不上服务器了(2024年版本 自动更新从1.85-1.86)

vscode日志 ll192.168.103.5s password:]0;C:\WINDOWS\System32\cmd.exe [17:09:16.886] Got some output, clearing connection timeout [17:09:16.887] Showing password prompt [17:09:19.688] Got password response [17:09:19.688] "install" wrote data to te…

Go语言每日一练 ——链表篇(三)

传送门 牛客面试笔试必刷101题 ---------------- 链表中的节点每k个一组翻转 题目以及解析 题目 解题代码及解析 package main import _"fmt" import . "nc_tools" /** type ListNode struct{* Val int* Next *ListNode* }*//*** 代码中的类名、方…

《Python 网络爬虫简易速速上手小册》第1章:Python 网络爬虫基础(2024 最新版)

文章目录 1.1 网络爬虫简介1.1.1 重点基础知识讲解1.1.2 重点案例:社交媒体数据分析1.1.3 拓展案例1:电商网站价格监控1.1.4 拓展案例2:新闻聚合服务 1.2 网络爬虫的工作原理1.2.1 重点基础知识讲解1.2.2 重点案例:股票市场数据采…

运营商数智化缩影:一部哑资源的资源管理史

不知你是否曾经留意过马路边的电杆、路面上的人井、还有路边不知道里面装的是什么的大箱子,稍微观察一下其实就会发现,这些设施上都会刻有产权归属单位,比如中国移动、中国电信、中国联通等等。那么,这些运营商的基础设施都是用来…

TCP TIME_WAIT 过多怎么处理

文章目录 1.什么是 TCP TIME_WAIT?2.为什么要 TIME_WAIT?3.TIME_WAIT 过多的影响4.解决办法4.1 调整短连接为长连接4.2 调整系统内核参数 5.小结参考文献 1.什么是 TCP TIME_WAIT? TCP 断开连接四次挥手过程中,主动断开连接的一方&#xff…

YOLO-World——超级轻量级开放词汇目标检测方法

前言 目标检测一直是计算机视觉领域中不可忽视的基础挑战,对图像理解、机器人技术和自主驾驶等领域具有广泛应用。随着深度神经网络的发展,目标检测方面的研究取得了显著进展。尽管这些方法取得了成功,但它们存在一些限制,主要体…

http伪造本地用户字段系列总结

本篇记录了http伪造本地用户的多条字段,便于快速解决题目 用法举例: 直接把伪造本地用户的多个字段复制到请求头中,光速解决部分字段被过滤的问题。 Client-IP: 127.0.0.1 Forwarded-For-Ip: 127.0.0.1 Forwarded-For: 127.0.0.1 Forwarded…

双非本科准备秋招(17.1)—— 力扣二叉树

1、257. 二叉树的所有路径 要求返回根节点到叶子节点的所有路径,这里用前序遍历就好。 每次递归前,都让字符串s加上当前节点的值和“->”,然后判断是否为叶子节点,如果是的话,说明这条路径是一个答案,因…

【教程】Linux使用支持文件恢复的rm命令

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 背景介绍 首先非常不幸地告诉你:Linux 系统的标准 rm 命令不支持文件恢复功能。一旦使用 rm 删除了文件或目录,它们就会从文件系统中永久删除,除非你使用专门的文件恢复工具尝试…

计算机设计大赛 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…

算法学习——LeetCode力扣哈希表篇2

算法学习——LeetCode力扣哈希表篇2 454. 四数相加 II 454. 四数相加 II - 力扣(LeetCode) 描述 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 …

Java 学习和实践笔记(1)

2024年,决定好好学习计算机语言Java. B站上选了这个课程:【整整300集】浙大大佬160小时讲完的Java教程(学习路线Java笔记)零基础,就从今天开始学吧。 在这些语言中,C语言是最基础的语言,绝大多…

C++ this指针/常量成员函数/const/mutable

目录 1.this 指针2.常量成员函数3.mutable 成员变量4.const 关键字总结5.参考内容 1.this 指针 this 指针,指向成员函数所作用的对象,并且 this 总是指向这个对象,所以 this 是一个常量指针,我们不允许改变 this 中保存的地址。th…

arcgis各种版本下载

arcgic 下载!!! ArcGIS是一款地理信息系统软件,由美国Esri公司开发。它提供了一系列完整的GIS功能,包括地图制作、空间数据管理、空间分析、空间信息整合、发布与共享等。ArcGIS是一个可扩展的GIS平台,提供…

vite+vue3发布自己的npm组件+工具函数

记录一下个人最近一次发布npm组件的过程: 一、创建组件和工具函数 执行命令创建一个空项目: npm create vite 创建过程稍微有些慢,不知何故?其中选择vue , 个人暂时使用的JS 。在 src 目录下面创建一个文件 package 存放组件和公…

Spring Web Header 解析常见错误

在上一章,我们梳理了 URL 相关错误。实际上,对于一个 HTTP 请求而言,URL 固然重要,但是为了便于用户使用,URL 的长度有限,所能携带的信息也因此受到了制约。 如果想提供更多的信息,Header 往往…