LLaMA 模型中的Transformer架构变化

目录

1. 前置层归一化(Pre-normalization)

2. RMSNorm 归一化函数

3. SwiGLU 激活函数

4. 旋转位置嵌入(RoPE)

5. 注意力机制优化

6. Group Query Attention

7. 模型规模和训练超参数

8. 分布式模型训练

前置归一化与后置归一化的区别

前置归一化(Pre-normalization)

后置归一化(Post-normalization)

结论


   

1. 前置层归一化(Pre-normalization)

LLaMA模型采用了前置层归一化策略,这意味着在每个子层(自注意力层和前馈网络)的输入之前进行层归一化。这与传统的Transformer中的后置层归一化不同,后者在子层输出之后进行归一化。

2. RMSNorm 归一化函数

LLaMA模型使用RMSNorm作为其归一化函数,这是一种替代传统层归一化的方法,它在保持计算效率的同时,专注于规范化权重矩阵的行,以实现更快的收敛和更好的泛化。

3. SwiGLU 激活函数

在LLaMA模型的Transformer架构中,激活函数从传统的ReLU或GELU更换为SwiGLU。SwiGLU是一种基于Swish激活函数的GLU变体,它提供了更好的梯度流动和可能的性能提升。

4. 旋转位置嵌入(RoPE)

LLaMA模型还采用了旋转位置嵌入(RoPE)来代替传统的位置编码方法。RoPE通过将位置信息编码为旋转矩阵,使模型能够更有效地捕捉序列中元素之间的位置关系。

5. 注意力机制优化

LLaMA模型可能包含对注意力机制的优化,例如稀疏注意力机制,以减少计算复杂度和内存需求。这些优化措施有助于提高模型的计算效率。

6. Group Query Attention

在LLaMA v2中,使用了Group Query Attention技术,这是一种将query分组,组内共享Key-Value的方法,旨在减少缓存量并加速计算,同时保持与Multi-Query Attention相似的效果。

7. 模型规模和训练超参数

LLaMA模型有不同的规模版本,从几十亿到数百亿参数不等。每个版本的模型都有特定的超参数设置,例如隐藏层大小、头数、层数、学习率等。

8. 分布式模型训练

由于LLaMA模型的参数量非常大,需要依赖分布式模型训练框架来完成训练过程,这可能涉及到大量的GPU资源和优化的训练策略。

前置归一化与后置归一化的区别

前置归一化(Pre-normalization)
  • 位置:在子层(如自注意力和前馈网络)的输入之前进行归一化。
  • 优点:有助于提高训练过程中的稳定性,特别是在模型参数初始化阶段,可以降低梯度爆炸的风险。
  • 缺点:可能需要更精细的学习率调整和优化策略。
后置归一化(Post-normalization)
  • 位置:在子层的输出之后进行归一化。
  • 优点:这是原始Transformer模型中的标准做法,对于许多任务而言效果良好。
  • 缺点:在大型模型和数据集上可能导致训练初期的梯度不稳定问题。
结论

LLaMA模型中的前置层归一化是为了提高模型的训练稳定性和效率,而后置层归一化则是Transformer的传统方法。在实际应用中,前置归一化可能更适合于训练大型模型,因为它可以减少训练初期的梯度问题。然而,这两种方法都有其优势和局限性,选择哪一种取决于具体的模型设计和任务需求。

参考:

  • 深入解析LLaMA如何改进Transformer的底层结构 - 知乎
  • LLaMA v1/2模型结构总览 - 知乎
  • LLaMA Explained | Papers With Code
  • Understanding Llama2: KV Cache, Grouped Query Attention, Rotary ...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254187.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

改进神经网络

Improve NN 文章目录 Improve NNtrain/dev/test setBias/Variancebasic recipeRegularizationLogistic RegressionNeural networkother ways optimization problemNormalizing inputsvanishing/exploding gradientsweight initializegradient checkNumerical approximationgrad…

设计模式-行为型模式(下)

1.访问者模式 访问者模式在实际开发中使用的非常少,因为它比较难以实现并且应用该模式肯能会导致代码的可读性变差,可维护性变差,在没有特别必要的情况下,不建议使用访问者模式. 访问者模式(Visitor Pattern) 的原始定义是: 允许在运行时将一个或多个操作应用于一…

【华为云】云上两地三中心实践实操

写在前面 应用上云之后,如何进行数据可靠性以及业务连续性的保障是非常关键的,通过华为云云上两地三中心方案了解相关方案认证地址:https://connect.huaweicloud.com/courses/learn/course-v1:HuaweiXCBUCNXI057Self-paced/about当前内容为华…

react将选中文本自动滑动到容器可视区域内

// 自动滚动到可视区域内useEffect(() > {const target ref;const wrapper wrapperRef?.current;if (target && wrapperRef) {const rect target.getBoundingClientRect();const wrapperRect wrapper.getBoundingClientRect();const isVisible rect.bottom &l…

2. Maven 继承与聚合

目录 2. 2.1 继承 2.2继承关系 2.2.1 思路分析 2.2.2 实现 2.1.2 版本锁定 2.1.2.1 场景 2.1.2.2 介绍 2.1.2.3 实现 2.1.2.4 属性配置 2.2 聚合 2.2.1 介绍 2.2.2 实现 2.3 继承与聚合对比 maven1:分模块设计开发 2. 在项目分模块开发之后啊&#x…

查大数据检测到风险等级太高是怎么回事?

随着金融风控越来越多元化,大数据作为新兴的技术被运用到贷前风控中去了,不少人也了解过自己的大数据,但是由于相关知识不足,看不懂报告,在常见的问题中,大数据检测到风险等级太高是怎么回事呢?小易大数据…

吉他学习:C大调第一把位音阶,四四拍曲目练习 小星星

第十三课 C大调第一把位音阶https://m.lizhiweike.com/lecture2/29364198 第十四课 四四拍曲目练习 小星星https://m.lizhiweike.com/lecture2/29364131 C大调第一把位音阶非常重要,可以多练习&#

游戏视频录制软件推荐,打造专业电竞视频(3款)

随着游戏产业的快速发展,越来越多的玩家开始关注游戏视频录制软件。一款好的录制软件不仅可以帮助玩家记录游戏中的精彩瞬间,还可以让其与他人分享自己的游戏体验。接下来,我们将介绍三款热门的游戏视频录制软件,并对其进行详细的…

【Git】05 分离头指针

文章目录 一、分离头指针二、创建分支三、比较commit内容四、总结 一、分离头指针 正常情况下,在通过git checkout命令切换分支时,在命令后面跟着的是分支名(例如master、temp等)或分支名对应commit的哈希值。 非正常情况下&…

【网工】华为设备命令学习(nat网络地址转换)

本次实验通过nat技术实现私网转公网。 实验中 pc1和ar2的基本配置省略&#xff0c;只需要配置基本IP地址就行。主要记录AR3的配置代码。 <Huawei>sy Enter system view, return user view with CtrlZ. [Huawei]int g0/0/0 [Huawei-Giga…

在PyTorch中,如何查看深度学习模型的每一层结构?

这里写目录标题 1. 使用print(model)2. 使用torchsummary库3.其余方法&#xff08;可以参考&#xff09; 在PyTorch中&#xff0c;如果想查看深度学习模型的每一层结构&#xff0c;可以使用print(model)或者model.summary()&#xff08;如果你使用的是torchsummary库&#xff0…

第2节、让电机转起来【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍用简单的方式&#xff0c;让步进电机转起来。其目的之一是对电机转动有直观的感受&#xff0c;二是熟悉整个开发流程。本系列教程必要的51单片机基础包括IO口操作、中断、定时器三个部分&#…

多模态对比语言图像预训练CLIP:打破语言与视觉的界限,具备零样本能力

多模态对比语言图像预训练CLIP:打破语言与视觉的界限,具备零样本能力。 一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力…

MATLAB知识点:逻辑运算函数

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章 3.4.4 逻辑运算 3.4.4.1 逻辑运算函数 在上…

springboo冬奥会科普平台源码和论文

随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理平台应运而生&#xff0c;各行各业相继进入信息管理时代&#xf…

AD域国产替代方案,助力某金融企业麒麟信创电脑实现“真替真用”

近期收到不少企业客户反馈采购的信创PC电脑用不起来&#xff0c;影响信创改造的进度。例如&#xff0c;某金融企业积极响应国产化信创替代战略&#xff0c;购置了一批麒麟操作系统电脑。分发使用中发现了如下问题&#xff1a; • 当前麒麟操作系统电脑无法做到统一身份认证&…

Flutter组件 StatefulWidget、StatelessWidget 可继承写法

前言 学过Java的同学&#xff0c;应该都知道面向对象语言的三大特征&#xff0c;封装、继承、多态&#xff1b; Dart也是面向对象的语言&#xff0c;但是在Flutter中的很多组件都被下划线 _ 标记为私有&#xff0c;导致无法继承&#xff0c;本文将介绍一种非私有的创建组件写…

@PostMapping/ @GetMapping等请求格式

目录 1.只传一个参数的 第一种 第二种 第三种:表单 2.传整个对象的 2.1修改实体类就是传整个对象过来 2.2新增实体类就是传整个对象过来新增 1.只传一个参数的 第一种 PostMapping("/add/{newsId}")public Result addOne(PathVariable Integer newsId) {}pos…

Python爬虫之文件存储#5

爬虫专栏&#xff1a;http://t.csdnimg.cn/WfCSx 文件存储形式多种多样&#xff0c;比如可以保存成 TXT 纯文本形式&#xff0c;也可以保存为 JSON 格式、CSV 格式等&#xff0c;本节就来了解一下文本文件的存储方式。 TXT 文本存储 将数据保存到 TXT 文本的操作非常简单&am…

排序算法---插入排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 插入排序是一种简单直观的排序算法&#xff0c;它的基本思想是将待排序的元素分为已排序和未排序两部分&#xff0c;每次从未排序部分中选择一个元素插入到已排序部分的合适位置&#xff0c;直到所有元素都插入到已排序部分…