【数学建模】【2024年】【第40届】【MCM/ICM】【C题 网球运动中的“动量”】【解题思路】

一、题目

(一) 赛题原文

2024 MCM Problem C: Momentum in Tennis
在这里插入图片描述
In the 2023 Wimbledon Gentlemen’s final, 20-year-old Spanish rising star Carlos Alcaraz defeated 36-year-old Novak Djokovic. The loss was Djokovic’s first at Wimbledon since 2013 and ended a remarkable run for one of the all-time great players in Grand Slams.

The match itself was a remarkable battle.[1] Djokovic seemed destined to win easily as he dominated the first set 6 – 1 (winning 6 of 7 games). The second set, however, was tense and finally won by Alcarez in a tie-breaker 7 – 6. The third set was the reverse of the first, Alcaraz winning handily 6 – 1. The young Spaniard seemed in total control as the fourth set started, but somehow the match again changed course with Djokovic taking complete control to win the set 6 – 3. The fifth and final set started with Djokovic carrying the edge from the fourth set, but again a change of direction occurred and Alcaraz gained control and the victory 6 – 4. The data for this match is in the provided data set, “match_id” of “2023-wimbledon-1701”. You can see all the points for the first set when Djokovic had the edge using the “set_no” column equal to 1. The incredible swings, sometimes for many points or even games, that occurred in the player who seemed to have the advantage are often attributed to “momentum.”

One dictionary definition of momentum is “strength or force gained by motion or by a series of events.”[2] In sports, a team or player may feel they have the momentum, or “strength/force” during a match/game, but it is difficult to measure such a phenomenon. Further, it is not readily apparent how various events during the match act to create or change momentum if it exists.
Data is provided for every point from all Wimbledon 2023 men’s matches after the first 2 rounds. You may choose to include additional player information or other data at your discretion, but you must completely document the sources. Use the data to:

  • Develop a model that captures the flow of play as points occur and apply it to one or more of the matches. Your model should identify which player is performing better at a given time in the match, as well as how much better they are performing. Provide a visualization based on your model to depict the match flow. Note: in tennis, the player serving has a much higher probability of winning the point/game. You may wish to factor this into your model in some way.
  • A tennis coach is skeptical that “momentum” plays any role in the match. Instead, he postulates that swings in play and runs of success by one player are random. Use your model/metric to assess this claim.
  • Coaches would love to know if there are indicators that can help determine when the flow of play is about to change from favoring one player to the other.
    a) Using the data provided for at least one match, develop a model that predicts these swings in the match. What factors seem most related (if any)?
    b) Given the differential in past match “momentum” swings how do you advise a player going into a new match against a different player?
  • Test the model you developed on one or more of the other matches. How well do you predict the swings in the match? If the model performs poorly at times, can you identify any factors that might need to be included in future models? How generalizable is your model to other matches (such as Women’s matches), tournaments, court surfaces, and other sports such as table tennis.
  • Produce a report of no more than 25 pages with your findings and include a one- to two-page memo summarizing your results with advice for coaches on the role of “momentum”, and how to prepare players to respond to events that impact the flow of play during a tennis match.

(二)赛题翻译

问题 C:网球运动中的“动量”

在 2023 年温布尔登网球公开赛男子组决赛中,20岁的西班牙新星卡洛斯-阿尔卡拉斯击败了 36岁的诺瓦克-德约科维奇。这是德约科维奇自2013年以来首次在温布尔登输掉比赛,也结束了这位大满贯历史上最伟大球员之一的辉煌战绩。

德约科维奇似乎注定要轻松获胜,因为他在第一盘以 6比1 的比分占据优势(7 局比赛中赢了 6 局)。然而,第二盘比赛却十分紧张,最终阿尔卡拉斯在决胜盘中以 7 - 6 获胜。第三盘与第一盘相反,阿尔卡拉斯以 6-1 的比分轻松获胜。第四盘开始后,年轻的西班牙人似乎完全控制了局面,但不知何故,比赛的走势再次发生了变化,德约科维奇完全控制了局面,以 6 - 3 的比分赢得了这一盘。第五盘也是最后一盘比赛开始后,德约科维奇延续了第四盘的优势,但比赛的走向再次发生了变化,阿尔卡拉斯取得了控制权,并以 6 - 4 的比分赢得了胜利。

本场比赛的数据在提供的数据集中,“match_id ”为 “2023- wimbledon-1701”。您可以使用“set_no”列=1 查看第一盘德约科维奇占优时的所有得分情况。 在一场比赛中的大部分的分,甚至是许多回合,这都归功于那些令人难以置信的挥拍,这些发生在某一位运动员身上的优势,成为 “势”。

在字典中,“动量 (势)”的定义是 "通过运动或一系列事件获得的力量或作用力。"在体育运动中,一支球队或一名球员可能会觉得他们在比赛中拥有动量或 “力量/作用力”,但很难衡量这种现象。此外,如果存在“动量 (势)”的话,比赛中那些产生或改变“动量 (势)”的瞬间,也不是一目了然的。

提供 2023 年温布尔登网球公开赛前两轮之后所有男子比赛中每一分的数据。您可以自行决定加入其他球员信息或其他数据,但必须完整记录数据来源。

使用这些数据来:

  • 建立一个模型,捕捉赛点发生时的比赛流程,并将其应用到一场或多场比赛中。您的模型应能确定哪位球员在比赛中的某个特定时间段表现更好,以及他们的表现好到什么程度。根据您的模型提供可视化的比赛流程描述。注意:在网球比赛中,发球的一方赢得赛点/比赛的概率要高得多。您可能希望以某种方式将这一因素考虑到您的模型中。

  • 一位网球教练对“动量 (势)”在比赛中的作用持怀疑态度。相反,他认为比赛中的波动和一名球员的成功是随机的。请使用您的模型/度量来评估这一说法。

  • 教练们很想知道,是否有一些指标可以帮助判断比赛的流程何时会从偏向一名球员变为偏向另一名球员。
    a) 利用提供的至少一场比赛的数据,建立一个模型来预测比赛中的这些波动。哪些因素似乎最有关联(如果有的话)?
    b) 鉴于过去比赛 "势头 "波动的差异,您如何建议球员在新的比赛中对阵不同的球员?

  • 在一场或多场其他比赛中测试您开发的模型。您对比赛中的波动预测得如何?如果模型有时表现不佳,您是否能找出未来模型中可能需要包含的任何因素?您的模型对其他比赛(如女子比赛)、锦标赛、球场表面和其他运动(如乒乓球)的通用性如何?

  • 撰写一份不超过 25 页的报告,介绍您的研究结果,并附上一至两页的备忘录,总结您的研究结果,并就“动量 (势)”的作用以及如何让球员做好准备,应对网球比赛中影响比赛进程的事件,向教练提出建议。

二、赛题分析

这个数学建模赛题围绕2023年温网男子单打决赛展开,其中20岁的西班牙新星卡洛斯·阿尔卡拉斯击败了36岁的诺瓦克·德约科维奇,结束了德约科维奇自2013年以来在温网的连胜纪录。比赛过程中出现了许多令人惊讶的变化,这种变化通常被归因于“势头”现象。赛题要求利用提供的数据集,开发一个模型来捕捉比赛中的战局流向,评估势头在比赛中的作用,并预测比赛中势头的变化。解决这个问题需要建立数学模型来分析比赛中的得分情况和势头变化,可能涉及到时间序列分析、统计模型、以及机器学习方法等。对于每个小问题,需要利用提供的数据集来进行建模和分析,并提供可视化展示和统计指标来支持结论。

针对第一个问题,需要开发一个模型来捕捉比赛中的战局流向,评估每个时刻哪位球员表现更好以及有多好。可能的方法包括建立一个时间序列模型来跟踪比赛中的得分情况,并考虑到发球方的优势。可视化可以通过绘制得分情况的图表来展示比赛流向。

针对第二个问题,涉及评估“势头”在比赛中的作用,可以利用模型来比较实际得分情况与模拟随机得分情况的差异,进而评估势头是否具有统计意义。

针对第三个问题,需要开发一个模型来预测比赛中势头的变化,可能需要考虑到比赛中的各种因素如球员状态、场地情况等。可以使用机器学习方法来挖掘与势头变化相关的因素,并建立预测模型。

针对第四个问题,涉及将模型应用到其他比赛,并评估模型的泛化能力。可能需要考虑到不同比赛、不同球员以及不同球场的情况,并对模型进行调整和改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/255599.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu篇---ubuntu安装python3.9

ubuntu篇—ubuntu安装python3.9 在ubuntu上安装Python有两种方法:在线安装和源码编译安装。 方法1:使用apt在线安装 1.更新软件包列表并安装必备组件: $ sudo apt update $ sudo apt install software-properties-common2.将Deadsnakes PPA添加到系统…

leetcode(矩阵)74. 搜索二维矩阵(C++详细解释)DAY7

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中…

服务器安装Docker (centOS)

1. 卸载旧版本的Docker(如果有) 首先,如果您的系统上安装了旧版本的Docker,需要将其卸载。Docker的旧版本称为docker或docker-engine。使用以下命令来卸载旧版本: sudo yum remove docker \ docker-client \ docker-…

16-Verilog实现二线制I2C CMOS串行EEPROM的读写操作

Verilog实现二线制I2C CMOS串行EEPROM的读写操作 1,二线制I2C CMOS串行EEPROM的简单介绍2,I2C总线特征介绍3,二线制I2C、CMOS串行EEPROM的读写操作4,EEPROM的Verilog HDL程序4.1,EEPROM的行为模型思路如下:…

leetcode9. 回文数|详细深入讲解算法

前往题目有 反转一半数字 思路 映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。 第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较&…

HCIA-HarmonyOS设备开发认证V2.0-3.2.轻量系统内核基础-时间管理

目录 一、时间管理1.1、时间接口 一、时间管理 时间管理以系统时钟为基础,给应用程序提供所有和时间有关的服务。系统时钟是由定时器/计数器产生的输出脉冲触发中断产生的,一般定义为整数或长整数。输出脉冲的周期叫做一个“时钟滴答”。系统时钟也称为…

防火墙安全策略及nat实验

要求一:生产区的设备在工作时间访问dmz区,仅可访问http服务器 要求二:办公区可以全天访问dmz区,其中10.0.2.20可以访问FTP服务器和HTTP服务器,10.0.2.10仅可以ping通10.0.3.10 要求三:办公区在访问服务器区时采用匿名认…

SpringCloud--Eureka注册中心服务搭建注册以及服务发现

注意springboot以及springcloud版本&#xff0c;可能有莫名其妙的错误&#xff0c;这里使用的是springboot-2.6.13&#xff0c;springcloud-2021.0.5 一&#xff0c;Eureka-Server搭建&#xff1a; 1.创建项目&#xff1a;引入依赖 <dependency><groupId>org.sp…

机器学习系列——(十八)K-means聚类

引言 在众多机器学习技术中&#xff0c;K-means聚类以其简洁高效著称&#xff0c;成为了数据分析师和算法工程师手中的利器。无论是在市场细分、社交网络分析&#xff0c;还是图像处理等领域&#xff0c;K-means都扮演着至关重要的角色。本文旨在深入解析K-means聚类的原理、实…

Javaweb之SpringBootWeb案例之事务管理的详细解析

1. 事务管理 1.1 事务回顾 在数据库阶段我们已学习过事务了&#xff0c;我们讲到&#xff1a; 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。事务会把所有的操作作为一个整体&#xff0c;一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功&am…

并行计算导论 笔记 1

目录 并行编程平台隐式并行超标量执行/指令流水线超长指令字处理器 VLIW 内存性能系统的局限避免内存延迟的方法 并行计算平台控制结构通信模型共享地址空间平台消息传递平台对比 物理组织理想并行计算机并行计算机互联网络网络拓朴结构基于总线的网络交叉开关网络多级网络全连…

【MySQL】数据库基础 -- 详解

一、什么是数据库 存储数据用文件就可以了&#xff0c;为什么还要弄个数据库? 一般的文件确实提供了数据的存储功能&#xff0c;但是文件并没有提供非常好的数据&#xff08;内容&#xff09;的管理能力&#xff08;用户角度&#xff09;。 文件保存数据有以下几个缺点&…

常用的前端模块化标准总结

1、模块化标准出现以前使用的模块化方案&#xff1a; 1&#xff09;文件划分&#xff1a; 将不同的模块定义在不同的文件中&#xff0c;然后使用时通过script标签引入这些文件 缺点&#xff1a; 模块变量相当于是定义在全局的&#xff0c;容易造成变量名冲突&#xff08;即不…

C++入门篇(4)—— 类与对象(1)

目录 1.类的引入 2.类的定义 3.类的访问限定符 4.类的作用域 5. 类对象的存储方式 6. this指针 6.1 this指针的引入 6.2 this指针的特性 6.3有意思的面试题 1.类的引入 C语言struct 结构体中只能定义变量&#xff0c;而C中可以定义函数。 struct Date {void Init(int…

基于Skywalking开发分布式监控(二)

续上篇&#xff0c;上一篇主要是讲了为啥选skywalking&#xff0c;以及怎么有针对性改造SW Agent&#xff0c;现在我们继续看看如何构建自定义Trace跟踪链 要对SW Agent插件做适当剪裁&#xff0c;原来包括customize插件在内SW 8.9有100多个插件&#xff0c;如果没有作用也就罢…

Spring Cloud使用ZooKeeper作为注册中心的示例

简单的Spring Cloud应用程序使用ZooKeeper作为注册中心的示例&#xff1a; 1.新建模块&#xff1a; 2.勾选依赖&#xff1a; 3.在pom.xml文件中做出部分修改及添加Spring Cloud Zookeeper 依赖版本&#xff1a; 完整pom文件 <?xml version"1.0" encoding&q…

【自然语言处理-工具篇】spaCy<1>--介绍及安装指南

目录 前言 安装指南 pip conda spaCy升级 总结 前言 spaCy是一个开源的自然语言处理库,用于处理和分析文本数据。它提供了许多功能,包括分词、词性标注

ES6扩展运算符——三个点(...)用法详解

目录 1 含义 2 替代数组的 apply 方法 3 扩展运算符的应用 &#xff08; 1 &#xff09;合并数组 &#xff08; 2 &#xff09;与解构赋值结合 &#xff08; 3 &#xff09;函数的返回值 &#xff08; 4 &#xff09;字符串 &#xff08; 5 &#xff09;实现了 Iter…

npm淘宝镜像源换新地址

新的淘宝npm镜像源地址&#xff1a;https://registry.npmmirror.com 切换新的镜像源 npm config set registry https://registry.npmmirror.com然后再执行以下操作查看是否成功 npm config list如果没安装过淘宝镜像源的&#xff0c;则直接安装 npm install -g cnpm --regi…

WordPress突然后台无法管理问题

登录WordPress后台管理评论&#xff0c;发现点击编辑、回复均无反应。 尝试清除缓存、关闭CF连接均无效。 查看插件时发现关闭wp-china-yes插件可以解决问题。 后来又测试了下发现加速管理后台这项&#xff0c;在启用时会发生点击无效问题&#xff0c;禁用就好了&#xff0c;不…